Connect with us

What happens when the COVID-19 vaccines enter the body – a road map for kids and grown-ups

An infectious disease doctor explains the science behind COVID-19 vaccines at a level that children – and adults – of all ages can understand.

Published

on

COVID-19 vaccines have been proved safe and effective. But it's understandable to have questions. Halfpoint/iStock via Getty Images Plus

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to curiouskidsus@theconversation.com.


How does a COVID-19 vaccine work in the body? – Wixy, age 12, New York


The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has changed the way people live around the world. As of late August 2021, more than 630,000 people have died in the United States alone. Health experts agree that COVID-19 vaccines are one important way to help bring an end to the pandemic.

But getting a vaccine can be scary for both kids and adults. Plus, there is lot of information about how the COVID-19 vaccines work, but some of it can be hard to understand.

As a pediatrician, infectious disease doctor and scientist who studies germs like bacteria and viruses, I have devoted close attention to the pandemic and the development of the COVID-19 vaccines.

Vaccines are made to resemble invaders

The most important thing to understand about vaccines is that they teach your body how to gear up to fight an infection, without your body having to deal with the infection itself. In this way, vaccines help your body be prepared for invasions by germs that could otherwise make you very sick.

All three of the COVID-19 vaccines available in the U.S. focus on what is called the spike protein of the SARS-CoV-2 virus, or coronavirus. SARS-CoV-2 is a round virus, with bumps all over it – sort of like a baseball covered in golf tees. The bumps are the spike proteins.

On an actual coronavirus, spike proteins allow the COVID-19 virus to get into cells so the virus can make more copies of itself. It does this by sticking to certain kinds of proteins, called receptors, on human cells – particularly lung cells. In this way, the virus can break into healthy cells and infect them.

The Pfizer-BioNTech, Moderna and Johnson & Johnson vaccines all work similarly by giving the body’s cells the instructions to make the spike protein. The Pfizer and Moderna vaccines carry these instructions on a molecule called mRNA. This single-stranded molecule looks like a long piece of tape with the instructions to make a protein coded on one side.

The Johnson & Johnson vaccine, on the other hand, passes the instructions to cells through DNA molecules. It uses a virus called an adenovirus, which cannot make copies of itself, to carry the spike proteins’ DNA into human cells. This DNA gets copied into mRNA, which then translates the instructions into proteins – in this case, the spike protein of the coronavirus.

Diagram shows encapsulated mRNA that codes for spike protein of coronavirus
The three COVID-19 vaccines code for the spike protein of the coronavirus – two using mRNA as a template (Pfizer and Moderna) and one using DNA as a template (J&J). Trinset/iStock via Getty Images Plus

So the main difference between the three vaccines is that the Pfizer and Moderna shots give your body instructions for the spike protein through mRNA, while the Johnson & Johnson shot directs it via DNA. After that, all three vaccines work the same way.

What happens when the vaccine enters your body?

Once a COVID-19 vaccine is injected, the mRNA or DNA gets swallowed up by tissue cells and special immune cells that live in muscles, skin and organs called dendritic cells. Dendritic cells keep watch over all parts of the body like sentinels, searching for signs of invading germs – like the coronavirus.

As soon as the DNA or mRNA is inside the dendritic or tissue cells, the cells use the instructions to create spike proteins. This process usually takes less than 12 hours. After the spike proteins are made and ready to “show” to the immune system, the mRNA or DNA is broken down by the cell and eliminated.

It’s important to know that even though your cells have made their own spike proteins, they don’t have enough information to make copies of the full virus. But the spike proteins can trigger the body’s immune system to amp up its defense so it is ready if the whole coronavirus invades.

When the tissue cells and dendritic cells recognize the spike proteins as unwelcome visitors, the cells place sections of the spike proteins on their exterior for other cells to see. The dendritic cells also release “danger” signals at the same time to let other cells know that the spike protein presents a threat. The danger signals are like flashing neon yellow signs pointing to the displayed spike protein piece saying, “This does not belong!”

These warning signals then fire up your body’s immune response.

What happens once the immune system gets revved up?

Thanks to that process, the body is now on high alert and ready to learn to fight invaders – in this case, the spike proteins made after injection with the COVID-19 vaccine.

Immune cells in the body, called B-cells and T-cells, recognize the warning signs of an outside invader. Thousands of these cells rush to the area to learn about this new threat so they can help provide protection.

B-cells are specialists at building “traps,” called antibodies, that will take down any invading spike proteins. Different B-cells make lots of specialized antibodies that recognize different parts of a virus or bacteria. And B-cells will act like a factory, continuing to make antibodies against the perceived threat even after it’s gone in order to protect the body for a long time to come.

Illustration of antibodies attacking coronavirus particle
This artistic depiction shows an antibody (on right) attacking a coronavirus particle, with golf-tee shaped spike proteins (in hot pink) on outer surface. Christoph Burgstedt/Science Photo Library via Getty Images

One type of T-cell, called helper T-cells, assist the B-cells in making antibodies when danger signals are present. Another kind of T-cell is there to check if other cells in the body are infected by the virus. If that type of T-cell spots an infected cell, it removes the infected cell so it cannot create more copies and pass on the infection to other cells.

Why is my arm sore?

As all of these important processes are happening inside your body, you might see some physical signs that there’s a struggle going on underneath the skin. If your arm gets sore after you get the shot, it’s because immune cells like the dendritic cells, T-cells and B-cells are racing to the arm to inspect the threat.

You might also experience a fever or other signs of sickness. All of these mean that your body is doing exactly what it’s supposed to. This is a safe and natural process that happens when the body is learning how to fight the spike proteins. That way, if you do come into contact with the real coronavirus, your body has learned how to protect you from it.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

Glenn J Rapsinski does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Read More

Continue Reading

Government

Buried Project Veritas Recording Shows Top Pfizer Scientists Suppressed Concerns Over COVID-19 Boosters, MRNA Tech

Buried Project Veritas Recording Shows Top Pfizer Scientists Suppressed Concerns Over COVID-19 Boosters, MRNA Tech

Submitted by Liam Cosgrove

Former…

Published

on

Buried Project Veritas Recording Shows Top Pfizer Scientists Suppressed Concerns Over COVID-19 Boosters, MRNA Tech

Submitted by Liam Cosgrove

Former Project Veritas & O’Keefe Media Group operative and Pfizer formulation analyst scientist Justin Leslie revealed previously unpublished recordings showing Pfizer’s top vaccine researchers discussing major concerns surrounding COVID-19 vaccines. Leslie delivered these recordings to Veritas in late 2021, but they were never published:

Featured in Leslie’s footage is Kanwal Gill, a principal scientist at Pfizer. Gill was weary of MRNA technology given its long research history yet lack of approved commercial products. She called the vaccines “sneaky,” suggesting latent side effects could emerge in time.

Gill goes on to illustrate how the vaccine formulation process was dramatically rushed under the FDA’s Emergency Use Authorization and adds that profit incentives likely played a role:

"It’s going to affect my heart, and I’m going to die. And nobody’s talking about that."

Leslie recorded another colleague, Pfizer’s pharmaceutical formulation scientist Ramin Darvari, who raised the since-validated concern that repeat booster intake could damage the cardiovascular system:

None of these claims will be shocking to hear in 2024, but it is telling that high-level Pfizer researchers were discussing these topics in private while the company assured the public of “no serious safety concerns” upon the jab’s release:

Vaccine for Children is a Different Formulation

Leslie sent me a little-known FDA-Pfizer conference — a 7-hour Zoom meeting published in tandem with the approval of the vaccine for 5 – 11 year-olds — during which Pfizer’s vice presidents of vaccine research and development, Nicholas Warne and William Gruber, discussed a last-minute change to the vaccine’s “buffer” — from “PBS” to “Tris” — to improve its shelf life. For about 30 seconds of these 7 hours, Gruber acknowledged that the new formula was NOT the one used in clinical trials (emphasis mine):


“The studies were done using the same volume… but contained the PBS buffer. We obviously had extensive consultations with the FDA and it was determined that the clinical studies were not required because, again, the LNP and the MRNA are the same and the behavior — in terms of reactogenicity and efficacy — are expected to be the same.

According to Leslie, the tweaked “buffer” dramatically changed the temperature needed for storage: “Before they changed this last step of the formulation, the formula was to be kept at -80 degrees Celsius. After they changed the last step, we kept them at 2 to 8 degrees celsius,” Leslie told me.

The claims are backed up in the referenced video presentation:

I’m no vaccinologist but an 80-degree temperature delta — and a 5x shelf-life in a warmer climate — seems like a significant change that might warrant clinical trials before commercial release.

Despite this information technically being public, there has been virtually no media scrutiny or even coverage — and in fact, most were told the vaccine for children was the same formula but just a smaller dose — which is perhaps due to a combination of the information being buried within a 7-hour jargon-filled presentation and our media being totally dysfunctional.

Bohemian Grove?

Leslie’s 2-hour long documentary on his experience at both Pfizer and O’Keefe’s companies concludes on an interesting note: James O’Keefe attended an outing at the Bohemian Grove.

Leslie offers this photo of James’ Bohemian Grove “GATE” slip as evidence, left on his work desk atop a copy of his book, “American Muckraker”:

My thoughts on the Bohemian Grove: my good friend’s dad was its general manager for several decades. From what I have gathered through that connection, the Bohemian Grove is not some version of the Illuminati, at least not in the institutional sense.

Do powerful elites hangout there? Absolutely. Do they discuss their plans for the world while hanging out there? I’m sure it has happened. Do they have a weird ritual with a giant owl? Yep, Alex Jones showed that to the world.

My perspective is based on conversations with my friend and my belief that his father is not lying to him. I could be wrong and am open to evidence — like if boxer Ryan Garcia decides to produce evidence regarding his rape claims — and I do find it a bit strange the club would invite O’Keefe who is notorious for covertly filming, but Occam’s razor would lead me to believe the club is — as it was under my friend’s dad — run by boomer conservatives the extent of whose politics include disliking wokeness, immigration, and Biden (common subjects of O’Keefe’s work).

Therefore, I don’t find O’Keefe’s visit to the club indicative that he is some sort of Operation Mockingbird asset as Leslie tries to depict (however Mockingbird is a 100% legitimate conspiracy). I have also met James several times and even came close to joining OMG. While I disagreed with James on the significance of many of his stories — finding some to be overhyped and showy — I never doubted his conviction in them.

As for why Leslie’s story was squashed… all my sources told me it was to avoid jail time for Veritas executives.

Feel free to watch Leslie’s full documentary here and decide for yourself.

Fun fact — Justin Leslie was also the operative behind this mega-viral Project Veritas story where Pfizer’s director of R&D claimed the company was privately mutating COVID-19 behind closed doors:

Tyler Durden Tue, 03/12/2024 - 13:40

Read More

Continue Reading

International

Association of prenatal vitamins and metals with epigenetic aging at birth and in childhood

“[…] our findings support the hypothesis that the intrauterine environment, particularly essential and non-essential metals, affect epigenetic aging…

Published

on

“[…] our findings support the hypothesis that the intrauterine environment, particularly essential and non-essential metals, affect epigenetic aging biomarkers across the life course.”

Credit: 2024 Bozack et al.

“[…] our findings support the hypothesis that the intrauterine environment, particularly essential and non-essential metals, affect epigenetic aging biomarkers across the life course.”

BUFFALO, NY- March 12, 2024 – A new research paper was published in Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) Volume 16, Issue 4, entitled, “Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort.”

Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. In this new study, researchers Anne K. Bozack, Sheryl L. Rifas-Shiman, Andrea A. Baccarelli, Robert O. Wright, Diane R. Gold, Emily Oken, Marie-France Hivert, and Andres Cardenas from Stanford University School of Medicine, Harvard Medical School, Harvard T.H. Chan School of Public Health, Columbia University, and Icahn School of Medicine at Mount Sinai investigated the extent to which first-trimester folate, B12, 5 essential and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. 

“[…] we hypothesized that OCM [one-carbon metabolism] nutrients and essential metals would be positively associated with EGAA and non-essential metals would be negatively associated with EGAA. We also investigated nonlinear associations and associations with mixtures of micronutrients and metals.”

Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. The researchers also observed evidence of nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. 

“Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.”

 

Read the full paper: DOI: https://doi.org/10.18632/aging.205602 

Corresponding Author: Andres Cardenas

Corresponding Email: andres.cardenas@stanford.edu 

Keywords: epigenetic age acceleration, metals, folate, B12, prenatal exposures

Click here to sign up for free Altmetric alerts about this article.

 

About Aging:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • Facebook
  • X, formerly Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • Reddit
  • Pinterest
  • Spotify, and available wherever you listen to podcasts

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###


Read More

Continue Reading

International

A beginner’s guide to the taxes you’ll hear about this election season

Everything you need to know about income tax, national insurance and more.

Cast Of Thousands/Shutterstock

National insurance, income tax, VAT, capital gains tax, inheritance tax… it’s easy to get confused about the many different ways we contribute to the cost of running the country. The budget announcement is the key time each year when the government shares its financial plans with us all, and announces changes that may make a tangible difference to what you pay.

But you’ll likely be hearing a lot more about taxes in the coming months – promises to cut or raise them are an easy win (or lose) for politicians in an election year. We may even get at least one “mini-budget”.

If you’ve recently entered the workforce or the housing market, you may still be wrapping your mind around all of these terms. Here is what you need to know about the different types of taxes and how they affect you.

The UK broadly uses three ways to collect tax:

1. When you earn money

If you are an employee or own a business, taxes are deducted from your salary or profits you make. For most people, this happens in two ways: income tax, and national insurance contributions (or NICs).

If you are self-employed, you will have to pay your taxes via an annual tax return assessment. You might also have to pay taxes this way for interest you earn on savings, dividends (distribution of profits from a company or shares you own) received and most other forms of income not taxed before you get it.

Around two-thirds of taxes collected come from people’s or business’ incomes in the UK.

2. When you spend money

VAT and excise duties are taxes on most goods and services you buy, with some exceptions like books and children’s clothing. About 20% of the total tax collected is VAT.

3. Taxes on wealth and assets

These are mainly taxes on the money you earn if you sell assets (like property or stocks) for more than you bought them for, or when you pass on assets in an inheritance. In the latter case in the UK, the recipient doesn’t pay this, it is the estate paying it out that must cover this if due. These taxes contribute only about 3% to the total tax collected.

You also likely have to pay council tax, which is set by the council you live in based on the value of your house or flat. It is paid by the user of the property, no matter if you own or rent. If you are a full-time student or on some apprenticeship schemes, you may get a deduction or not have to pay council tax at all.


Quarter life, a series by The Conversation

This article is part of Quarter Life, a series about issues affecting those of us in our 20s and 30s. From the challenges of beginning a career and taking care of our mental health, to the excitement of starting a family, adopting a pet or just making friends as an adult. The articles in this series explore the questions and bring answers as we navigate this turbulent period of life.

You may be interested in:

If you get your financial advice on social media, watch out for misinformation

Future graduates will pay more in student loan repayments – and the poorest will be worst affected

Selling on Vinted, Etsy or eBay? Here’s what you need to know about paying tax


Put together, these totalled almost £790 billion in 2022-23, which the government spends on public services such as the NHS, schools and social care. The government collects taxes from all sources and sets its spending plans accordingly, borrowing to make up any difference between the two.

Income tax

The amount of income tax you pay is determined by where your income sits in a series of “bands” set by the government. Almost everyone is entitled to a “personal allowance”, currently £12,570, which you can earn without needing to pay any income tax.

You then pay 20% in tax on each pound of income you earn (across all sources) from £12,570-£50,270. You pay 40% on each extra pound up to £125,140 and 45% over this. If you earn more than £100,000, the personal allowance (amount of untaxed income) starts to decrease.

If you are self-employed, the same rates apply to you. You just don’t have an employer to take this off your salary each month. Instead, you have to make sure you have enough money at the end of the year to pay this directly to the government.


Read more: Taxes aren't just about money – they shape how we think about each other


The government can increase the threshold limits to adjust for inflation. This tries to ensure any wage rise you get in response to higher prices doesn’t lead to you having to pay a higher tax rate. However, the government announced in 2021 that they would freeze these thresholds until 2026 (extended now to 2028), arguing that it would help repay the costs of the pandemic.

Given wages are now rising for many to help with the cost of living crisis, this means many people will pay more income tax this coming year than they did before. This is sometimes referred to as “fiscal drag” – where lower earners are “dragged” into paying higher tax rates, or being taxed on more of their income.

National insurance

National insurance contributions (NICs) are a second “tax” you pay on your income – or to be precise, on your earned income (your salary). You don’t pay this on some forms of income, including savings or dividends, and you also don’t pay it once you reach state retirement age (currently 66).

While Jeremy Hunt, the current chancellor of the exchequer, didn’t adjust income tax meaningfully in this year’s budget, he did announce a cut to NICs. This was a surprise to many, as we had already seen rates fall from 12% to 10% on incomes higher than £242/week in January. It will now fall again to 8% from April.


Read more: Budget 2024: experts explain what it means for taxpayers, businesses, borrowers and the NHS


While this is charged separately to income tax, in reality it all just goes into one pot with other taxes. Some, including the chancellor, say it is time to merge these two deductions and make this simpler for everyone. In his budget speech this year, Hunt said he’d like to see this tax go entirely. He thinks this isn’t fair on those who have to pay it, as it is only charged on some forms of income and on some workers.

I wouldn’t hold my breath for this to happen however, and even if it did, there are huge sums linked to NICs (nearly £180bn last year) so it would almost certainly have to be collected from elsewhere (such as via an increase in income taxes, or a lot more borrowing) to make sure the government could still balance its books.

A young black man sits at a home office desk with his feet up, looking at a mobile phone
Do you know how much tax you pay? Alex from the Rock/Shutterstock

Other taxes

There are likely to be further tweaks to the UK’s tax system soon, perhaps by the current government before the election – and almost certainly if there is a change of government.

Wealth taxes may be in line for a change. In the budget, the chancellor reduced capital gains taxes on sales of assets such as second properties (from 28% to 24%). These types of taxes provide only a limited amount of money to the government, as quite high thresholds apply for inheritance tax (up to £1 million if you are passing on a family home).

There are calls from many quarters though to look again at these types of taxes. Wealth inequality (the differences between total wealth held by the richest compared to the poorest) in the UK is very high (much higher than income inequality) and rising.

But how to do this effectively is a matter of much debate. A recent study suggested a one-off tax on total wealth held over a certain threshold might work. But wealth taxes are challenging to make work in practice, and both main political parties have already said this isn’t an option they are considering currently.

Andy Lymer and his colleagues at the Centre for Personal Financial Wellbeing at Aston University currently or have recently received funding for their research work from a variety of funding bodies including the UK's Money and Pension Service, the Aviva Foundation, Fair4All Finance, NEST Insight, the Gambling Commission, Vivid Housing and the ESRC, amongst others.

Read More

Continue Reading

Trending