Connect with us

Uncategorized

Lego-like gene editing tool lets researchers improve cancer immunotherapy

SAN FRANCISCO, CA—In recent years, scientists have used gene modification technologies to reprogram immune cells into therapeutics that can attack cancers….

Published

on

SAN FRANCISCO, CA—In recent years, scientists have used gene modification technologies to reprogram immune cells into therapeutics that can attack cancers. But such immunotherapies don’t work for all patients or all cancer types, and screening through every possible combination of genetic changes that might improve these reprogrammed immune cells is a daunting and slow task.

Credit: Michael Short/Gladstone Institutes

SAN FRANCISCO, CA—In recent years, scientists have used gene modification technologies to reprogram immune cells into therapeutics that can attack cancers. But such immunotherapies don’t work for all patients or all cancer types, and screening through every possible combination of genetic changes that might improve these reprogrammed immune cells is a daunting and slow task.

Now, scientists at Gladstone Institutes and UC San Francisco (UCSF) have developed a technology that lets them rapidly “snap” together thousands of different combinations of genetic edits to test in immune cells. They used their screening technology, called Modular Pooled Knockin Screening (ModPoKI), to identify a new combination of genes that, when added to immune cells, makes the cells last longer and become more effective at fighting cancers.

“This is a major step forward in our ability to ask questions about how we put pieces of genetic programs together into cells and test how they may be advantageous for patients,” says Alex Marson, MD, PhD, director of the Gladstone-UCSF Institute of Genomic Immunology and senior author of the new study published in Cell. “I think this is going to accelerate the development of better cellular therapies.”

“This study demonstrates the power of using high-throughput genomics to discover and engineer novel molecular programs in cell therapies, and further, to understand the impact of these programs on the T cell state that is required for cancer killing,” adds Ansuman Satpathy, MD, PhD, affiliate investigator at Gladstone, assistant professor in the Department of Pathology at the Stanford School of Medicine, and co-author of the study.

Mixing and Matching Parts

The immune system’s T cells play a key role in fighting cancer. When a T cell recognizes a cancer cell as foreign, through a receptor on its surface, it targets the cancer cell for destruction. Scientists have discovered how to alter receptor proteins on T cells—often done by adding DNA sequences for an artificial chimeric antigen receptor (CAR)—so the T cells can more easily recognize and eliminate cancer cells.

With CAR T-cell therapy, cancer patients’ T cells are removed with a blood draw, reprogrammed genetically in the lab to introduce these new CAR receptors, and infused back into the patients’ blood. Many CAR T-cell therapies, however, still have limitations: they often don’t work against solid tumors, they can wear out over time, and some CARs don’t elicit strong enough immune responses to kill cancer cells.

“CAR T cells have been incredibly successful in the treatment of blood cancers like leukemia and lymphoma, but we’re still searching for ways to optimize them and apply them to other cancers,” says Franziska Blaeschke, MD, PhD, a postdoctoral fellow in Marson’s lab and first author of the new paper. “Until now, what we’ve been lacking is a systematic way to discover what genetic changes in a T cell will be most effective at improving CAR T cells.”

To fill that gap, the team of scientists developed ModPoKI. The technology combines multiple genes into long stretches of DNA for use in a CRISPR gene editing platform. The group used this tool to create approximately 10,000 possible combinations of these DNA stretches by mixing hundreds of genes with DNA for a specific CAR. Then, they pasted the stitched-together DNA sequences into a defined location in the T cell genome using CRISPR.

Each T cell took up a different DNA sequence, and the researchers then raced the cells against each other to see which ones performed best in various tests that could predict anti-tumor activity. An easy-to-read DNA barcode on each ModPoKI-generated set of genes let them track which gene combination led to improved T cells.

The Lego-like ability to combine genes in new ways before adding them to the cells is what allowed them to rapidly discover combinations that might improve CAR T cells—without having to manually choose and engineer each combination.

“Rather than having to make individual guesses about what might improve the function of cells and work through them one by one, we can click these pieces together and very rapidly test many of them in succession,” says Theodore Roth, MD, PhD, a former member of Marson’s lab now working with Satpathy’s group, and co-senior author of the study. “It’s a really useful piece of molecular biology.”

Toward Better Therapeutics

The genes that Marson’s team added to cells in the new study were surface receptors (both natural and engineered receptors designed to send boosting signals to CAR T cells) and transcription factors (which turn other genes on and off). When they analyzed test results from the hundreds of surface receptors and transcription factors, the researchers discovered that different CARs can be optimized by different factors.

“It turns out it’s not a one-transcription-factor-fits-all approach,” says Blaeschke. “So, when researchers are developing new CAR T cells, it makes sense to check what other factors will be best to engineer at the same time. Our work produced a kind of atlas scientists can use to combine different transcription factors with different T cell receptors or CARs.”

They also pinpointed a combination of two transcription factors that often seemed to improve CAR T cells. These two transcription factors—known as BATF and TFAP4—boosted the fitness of a CAR T cell that had previously been developed to treat childhood brain tumors.

“In the lab, the ModPoKI sequence with BATF and TFAP4 made CAR T cells show potential to improve anti-tumor activity,” says Marson. “Next, we need to do more work to determine whether adding these transcription factors will make CAR T cells more effective in human cancer patients.”

###

About the Study

The paper, “Modular Pooled Discovery of Synthetic Knockin Sequences to Program Durable Cell Therapies,” was published in the journal Cell on September 14, 2023. Other authors are: Yan Yi Chen, Ryan Apathy, Bence Daniel, Andy Y. Chen, Peixin Amy Chen, Katalin Sandor, Wenxi Zhang, Zhongmei Li, Cody Mowery, Tori N. Yamamoto, William A. Nyberg, Angela To, Ruby Yu, Ralf Schmidt, and Daniel B. Goodman of Gladstone; Raymund Bueno, Min Cheol Kim, Justin Eyquem, Julia Carnevale, Eric Shifrut, and Chun Jimmie Ye of UCSF; and Tobias Feuchtinger of Ludwig Maximilian University of Munich.

The work was supported by the National Institutes of Health (S10 RR028962, P30 DK063720, S10 1S10OD021822-01, F30DK120213), the National Cancer Institute (1R01CA276368-01, 5T32CA108462, 1K08CA252605-01), the Parker Institute for Cancer Immunotherapy, the Cancer League, the James B. Pendleton Charitable Trust, the UCSF Medical Scientist Training Program (T32GM007618), UCSF Endocrinology Training Grant (T32 DK007418), the Burroughs Wellcome Fund, the Lydia Preisler Shorenstein Donor Advised Fund, the Care-for-Rare Foundation, the German Research Foundation (SFB-TRR338/1 2021 –452881907), an Emerging Investigators EHA-EBMT Joint Fellowship Award, Lloyd J. Old STAR Awards (Cancer Research Institute), a Pew-Stewart Scholars in Cancer Research Award, the Simons Foundation, Innovative Genomics Institute, the Chan Zuckerberg Biohub, the Byers family, Barbara Bakar, Karen Jordan, Elena Radutzky, the Austrian Exchange Service, the Austrian Society of Laboratory Medicine, and the Max Kade Foundation.

About Gladstone Institutes

Gladstone Institutes is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. Established in 1979, it is located in the epicenter of biomedical and technological innovation, in the Mission Bay neighborhood of San Francisco. Gladstone has created a research model that disrupts how science is done, funds big ideas, and attracts the brightest minds.

About UCSF

The University of California, San Francisco (UCSF) is exclusively focused on the health sciences and is dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. UCSF Health, which serves as UCSF’s primary academic medical center, includes top-ranked specialty hospitals and other clinical programs, and has affiliations throughout the Bay Area. Learn more at ucsf.edu, or see our Fact Sheet.


Read More

Continue Reading

Uncategorized

Aging at AACR Annual Meeting 2024

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging…

Published

on

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging research. Aging is one of the most prominent journals published by Impact Journals

Credit: Impact Journals

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging research. Aging is one of the most prominent journals published by Impact Journals

Impact Journals will be participating as an exhibitor at the American Association for Cancer Research (AACR) Annual Meeting 2024 from April 5-10 at the San Diego Convention Center in San Diego, California. This year, the AACR meeting theme is “Inspiring Science • Fueling Progress • Revolutionizing Care.”

Visit booth #4159 at the AACR Annual Meeting 2024 to connect with members of the Aging team.

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed and archived by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com​​ and connect with us:

  • Aging X
  • Aging Facebook
  • Aging Instagram
  • Aging YouTube
  • Aging LinkedIn
  • Aging SoundCloud
  • Aging Pinterest
  • Aging Reddit

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.


Read More

Continue Reading

Uncategorized

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

One month after the inflation outlook tracked…

Published

on

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

One month after the inflation outlook tracked by the NY Fed Consumer Survey extended their late 2023 slide, with 3Y inflation expectations in January sliding to a record low 2.4% (from 2.6% in December), even as 1 and 5Y inflation forecasts remained flat, moments ago the NY Fed reported that in February there was a sharp rebound in longer-term inflation expectations, rising to 2.7% from 2.4% at the three-year ahead horizon, and jumping to 2.9% from 2.5% at the five-year ahead horizon, while the 1Y inflation outlook was flat for the 3rd month in a row, stuck at 3.0%. 

The increases in both the three-year ahead and five-year ahead measures were most pronounced for respondents with at most high school degrees (in other words, the "really smart folks" are expecting deflation soon). The survey’s measure of disagreement across respondents (the difference between the 75th and 25th percentile of inflation expectations) decreased at all horizons, while the median inflation uncertainty—or the uncertainty expressed regarding future inflation outcomes—declined at the one- and three-year ahead horizons and remained unchanged at the five-year ahead horizon.

Going down the survey, we find that the median year-ahead expected price changes increased by 0.1 percentage point to 4.3% for gas; decreased by 1.8 percentage points to 6.8% for the cost of medical care (its lowest reading since September 2020); decreased by 0.1 percentage point to 5.8% for the cost of a college education; and surprisingly decreased by 0.3 percentage point for rent to 6.1% (its lowest reading since December 2020), and remained flat for food at 4.9%.

We find the rent expectations surprising because it is happening just asking rents are rising across the country.

At the same time as consumers erroneously saw sharply lower rents, median home price growth expectations remained unchanged for the fifth consecutive month at 3.0%.

Turning to the labor market, the survey found that the average perceived likelihood of voluntary and involuntary job separations increased, while the perceived likelihood of finding a job (in the event of a job loss) declined. "The mean probability of leaving one’s job voluntarily in the next 12 months also increased, by 1.8 percentage points to 19.5%."

Mean unemployment expectations - or the mean probability that the U.S. unemployment rate will be higher one year from now - decreased by 1.1 percentage points to 36.1%, the lowest reading since February 2022. Additionally, the median one-year-ahead expected earnings growth was unchanged at 2.8%, remaining slightly below its 12-month trailing average of 2.9%.

Turning to household finance, we find the following:

  • The median expected growth in household income remained unchanged at 3.1%. The series has been moving within a narrow range of 2.9% to 3.3% since January 2023, and remains above the February 2020 pre-pandemic level of 2.7%.
  • Median household spending growth expectations increased by 0.2 percentage point to 5.2%. The increase was driven by respondents with a high school degree or less.
  • Median year-ahead expected growth in government debt increased to 9.3% from 8.9%.
  • The mean perceived probability that the average interest rate on saving accounts will be higher in 12 months increased by 0.6 percentage point to 26.1%, remaining below its 12-month trailing average of 30%.
  • Perceptions about households’ current financial situations deteriorated somewhat with fewer respondents reporting being better off than a year ago. Year-ahead expectations also deteriorated marginally with a smaller share of respondents expecting to be better off and a slightly larger share of respondents expecting to be worse off a year from now.
  • The mean perceived probability that U.S. stock prices will be higher 12 months from now increased by 1.4 percentage point to 38.9%.
  • At the same time, perceptions and expectations about credit access turned less optimistic: "Perceptions of credit access compared to a year ago deteriorated with a larger share of respondents reporting tighter conditions and a smaller share reporting looser conditions compared to a year ago."

Also, a smaller percentage of consumers, 11.45% vs 12.14% in prior month, expect to not be able to make minimum debt payment over the next three months

Last, and perhaps most humorous, is the now traditional cognitive dissonance one observes with these polls, because at a time when long-term inflation expectations jumped, which clearly suggests that financial conditions will need to be tightened, the number of respondents expecting higher stock prices one year from today jumped to the highest since November 2021... which incidentally is just when the market topped out during the last cycle before suffering a painful bear market.

Tyler Durden Mon, 03/11/2024 - 12:40

Read More

Continue Reading

Uncategorized

Homes listed for sale in early June sell for $7,700 more

New Zillow research suggests the spring home shopping season may see a second wave this summer if mortgage rates fall
The post Homes listed for sale in…

Published

on

  • A Zillow analysis of 2023 home sales finds homes listed in the first two weeks of June sold for 2.3% more. 
  • The best time to list a home for sale is a month later than it was in 2019, likely driven by mortgage rates.
  • The best time to list can be as early as the second half of February in San Francisco, and as late as the first half of July in New York and Philadelphia. 

Spring home sellers looking to maximize their sale price may want to wait it out and list their home for sale in the first half of June. A new Zillow® analysis of 2023 sales found that homes listed in the first two weeks of June sold for 2.3% more, a $7,700 boost on a typical U.S. home.  

The best time to list consistently had been early May in the years leading up to the pandemic. The shift to June suggests mortgage rates are strongly influencing demand on top of the usual seasonality that brings buyers to the market in the spring. This home-shopping season is poised to follow a similar pattern as that in 2023, with the potential for a second wave if the Federal Reserve lowers interest rates midyear or later. 

The 2.3% sale price premium registered last June followed the first spring in more than 15 years with mortgage rates over 6% on a 30-year fixed-rate loan. The high rates put home buyers on the back foot, and as rates continued upward through May, they were still reassessing and less likely to bid boldly. In June, however, rates pulled back a little from 6.79% to 6.67%, which likely presented an opportunity for determined buyers heading into summer. More buyers understood their market position and could afford to transact, boosting competition and sale prices.

The old logic was that sellers could earn a premium by listing in late spring, when search activity hit its peak. Now, with persistently low inventory, mortgage rate fluctuations make their own seasonality. First-time home buyers who are on the edge of qualifying for a home loan may dip in and out of the market, depending on what’s happening with rates. It is almost certain the Federal Reserve will push back any interest-rate cuts to mid-2024 at the earliest. If mortgage rates follow, that could bring another surge of buyers later this year.

Mortgage rates have been impacting affordability and sale prices since they began rising rapidly two years ago. In 2022, sellers nationwide saw the highest sale premium when they listed their home in late March, right before rates barreled past 5% and continued climbing. 

Zillow’s research finds the best time to list can vary widely by metropolitan area. In 2023, it was as early as the second half of February in San Francisco, and as late as the first half of July in New York. Thirty of the top 35 largest metro areas saw for-sale listings command the highest sale prices between May and early July last year. 

Zillow also found a wide range in the sale price premiums associated with homes listed during those peak periods. At the hottest time of the year in San Jose, homes sold for 5.5% more, a $88,000 boost on a typical home. Meanwhile, homes in San Antonio sold for 1.9% more during that same time period.  

 

Metropolitan Area Best Time to List Price Premium Dollar Boost
United States First half of June 2.3% $7,700
New York, NY First half of July 2.4% $15,500
Los Angeles, CA First half of May 4.1% $39,300
Chicago, IL First half of June 2.8% $8,800
Dallas, TX First half of June 2.5% $9,200
Houston, TX Second half of April 2.0% $6,200
Washington, DC Second half of June 2.2% $12,700
Philadelphia, PA First half of July 2.4% $8,200
Miami, FL First half of June 2.3% $12,900
Atlanta, GA Second half of June 2.3% $8,700
Boston, MA Second half of May 3.5% $23,600
Phoenix, AZ First half of June 3.2% $14,700
San Francisco, CA Second half of February 4.2% $50,300
Riverside, CA First half of May 2.7% $15,600
Detroit, MI First half of July 3.3% $7,900
Seattle, WA First half of June 4.3% $31,500
Minneapolis, MN Second half of May 3.7% $13,400
San Diego, CA Second half of April 3.1% $29,600
Tampa, FL Second half of June 2.1% $8,000
Denver, CO Second half of May 2.9% $16,900
Baltimore, MD First half of July 2.2% $8,200
St. Louis, MO First half of June 2.9% $7,000
Orlando, FL First half of June 2.2% $8,700
Charlotte, NC Second half of May 3.0% $11,000
San Antonio, TX First half of June 1.9% $5,400
Portland, OR Second half of April 2.6% $14,300
Sacramento, CA First half of June 3.2% $17,900
Pittsburgh, PA Second half of June 2.3% $4,700
Cincinnati, OH Second half of April 2.7% $7,500
Austin, TX Second half of May 2.8% $12,600
Las Vegas, NV First half of June 3.4% $14,600
Kansas City, MO Second half of May 2.5% $7,300
Columbus, OH Second half of June 3.3% $10,400
Indianapolis, IN First half of July 3.0% $8,100
Cleveland, OH First half of July  3.4% $7,400
San Jose, CA First half of June 5.5% $88,400

 

The post Homes listed for sale in early June sell for $7,700 more appeared first on Zillow Research.

Read More

Continue Reading

Trending