Connect with us

Uncategorized

Drugs of the future will be easier and faster to make, thanks to mRNA – after researchers work out a few remaining kinks

The COVID-19 pandemic demonstrated the promise of using mRNA as medicine. But before mRNA drugs can go beyond vaccines, researchers need to identify the…

Two hurdles mRNA drugs face are a short half-life and impurities that trigger immune responses. BlackJack3D/iStock via Getty Images Plus

Vaccines have been reliably and affordably protecting people from diseases worldwide for centuries. Until the COVID-19 pandemic, however, vaccine development was still a long and idiosyncratic process. Traditionally, researchers had to tailor manufacturing processes and facilities for each vaccine candidate, and the scientific knowledge gained from one vaccine was often not directly transferable to another.

But the COVID-19 mRNA vaccines brought a new approach to vaccine development that has far-reaching implications for how researchers make drugs to treat many other diseases.

I am a biochemist, and my lab at UMass Chan Medical School focuses on developing better ways to use mRNA as a drug. Although there are many possibilities for what researchers can use mRNA to treat, some important limitations remain. Better understanding how mRNA-based drugs interact with the immune system and how they are degraded in human cells can help lead to safe, durable and effective treatments for a wide range of diseases.

Some basics of mRNA drugs

Messenger RNA, or mRNA, is made of four building blocks denoted by the letters A, C, G and U. The sequence of letters in an mRNA molecule conveys genetic information that directs how a protein is made.

An mRNA drug comprises two essential components: mRNA molecules, which code for desired proteins, and the lipid molecules – such as phospholipids and cholesterol – that encapsulate them. These mRNA-lipid nanoparticles, or LNPs, are tiny spheres about 100 nanometers in diameter that protect mRNA from degradation and facilitate its delivery into target cells.

Once inside cells, mRNA molecules instruct the cell’s machinery to produce the target protein required for a desired therapeutic effect. For example, the mRNA in the Pfizer-BioNTech and Moderna COVID-19 vaccines directs cells to produce a harmless version of the virus’ spike protein that trains the immune system to recognize and better prepare for potential infection.

The science behind COVID-19 mRNA vaccines has been decades in the making.

From a drug development perspective, mRNA drugs offer significant advantages over traditional drugs because they are easily programmable. Hundreds of pounds of mRNA can be made from readily available DNA templates, such that producing a different mRNA drug is as simple as changing the corresponding DNA templates.

More importantly, different mRNA drugs produced by the same set of methods will have similar properties. They will be delivered to the same tissues, trigger similar levels of immune responses and degrade in similar ways. This predictability significantly reduces the development risks and financial costs of developing mRNA drugs.

In addition to being easy to program, mRNA drugs have several other unique properties. For example, just like the mRNAs your body naturally produces, therapeutic mRNAs have a short half-life in cells: about one day. As a result, current mRNA technology is ideal for treatments that aren’t meant to last long in the body.

This is why vaccines are popular candidates for mRNA technology: They provide long-term protection against disease after brief exposure to the drug with few side effects. There are currently more than 30 mRNA vaccine candidates, not including vaccines for COVID-19, in clinical trials.

Self vs. nonself

Another critical feature of mRNA drugs is their intrinsic ability to stimulate the immune system. This may sound paradoxical – after all, your cells already contain large amounts of mRNAs. Why would other mRNAs activate your immune system? How does your immune system distinguish between self and nonself mRNAs?

The first reason involves location. Therapeutic mRNAs enter cells using endosomes – sacs made of the cell’s membrane that take in materials from the cell’s environment. Your immune system can detect mRNA in endosomes because this is usually a sign of an RNA virus infection – cellular mRNAs normally don’t enter endosomes. When your immune system labels therapeutic mRNAs as viral material, it triggers a strong inflammatory response that can lead to severe side effects.

Diagram showing molecules entering a depression in the cell membrane which closes off to form a sac
Endocytosis is the process by which material outside the cell, such as mRNA molecules, is engulfed within the cell. alfa md/iStock via Getty Images Plus

One solution to this problem is to modify mRNA’s building blocks – specifically, changing the U, or uridine, to its chemical cousins, pseudouridine and N1-methylpseudouridine. This subtle chemical change prevents the unwanted immune response while allowing the therapeutic mRNA to direct the cell to make the protein it encodes. The 2023 Nobel Prize in physiology or medicine was awarded to the scientists who made this breakthrough discovery. Both the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines use this technique.

The second source of unwanted immune response is impurities from mRNA production. To prepare mRNA from a DNA template, scientists use a protein called RNA polymerase that tends to make a small amount of side product called double-stranded RNA. Unlike mRNA, which is single-stranded, double-stranded RNA has two chains that form a double helix. RNA viruses also form double-stranded RNA when they replicate, and exposing cells to double-stranded RNA can lead to a strong immune response.

Removing double-stranded RNA is challenging, especially at the industrial scale. Fortuitously, for mRNA vaccines, the residual amount of double-stranded RNA can stimulate the immune system to enhance antibody responses. However, for applications other than vaccines, a cleaner RNA product is necessary to reduce side effects.

Moving beyond vaccines

Although mRNA has the potential to transform drug development for various medical purposes, careful consideration is required to identify targets that align with the technology’s strengths.

For example, because there is currently a limit to how long mRNA can last in the body, treatments that need a protein to be present for only a short period of time to achieve a lasting therapeutic effect are ideal. One promising example in development is using mRNA that encodes CRISPR-Cas9 gene-editing proteins to knock out genes that cause specific diseases.

Researchers are exploring this strategy to develop a single-dose treatment for hereditary transthyretin amyloidosis, a rare genetic disease caused by the accumulation of misfolded proteins in the heart and nerves. This disease is an ideal target for mRNA-based CRISPR gene therapy because the target protein is produced by the liver. Because most drugs pass through the liver, this makes it easier to deliver CRISPR-Cas9 mRNA to its target. In the next few years, a new generation of more precise mRNA-based genome editing therapies will enter clinical trials.

Microscopy image of SARS-CoV-2 virus particles lining the a few vesicles in a cell
Because the virus that causes COVID-19 (gold) and other RNA viruses enter cells through endosomes, mRNA drug impurities can elicit similar immune responses. NIAID/Flickr, CC BY

For treatments that need a specific protein to be present in the body for long periods of time or need to prompt little to no immune reaction, further advancements in mRNA technology are necessary to extend mRNA’s half-life and eliminate immune-triggering contaminants. Notable new developments in these areas include using computational algorithms to optimize mRNA sequences in ways that enhance their stability and engineering RNA polymerases that introduce fewer side products that may cause an immune response.

Further advancements have the potential to enable a new generation of safe, durable and effective mRNA therapeutics for applications beyond vaccines.

Li Li receives funding from NIH.

Read More

Continue Reading

Uncategorized

Aging at AACR Annual Meeting 2024

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging…

Published

on

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging research. Aging is one of the most prominent journals published by Impact Journals

Credit: Impact Journals

BUFFALO, NY- March 11, 2024 – Impact Journals publishes scholarly journals in the biomedical sciences with a focus on all areas of cancer and aging research. Aging is one of the most prominent journals published by Impact Journals

Impact Journals will be participating as an exhibitor at the American Association for Cancer Research (AACR) Annual Meeting 2024 from April 5-10 at the San Diego Convention Center in San Diego, California. This year, the AACR meeting theme is “Inspiring Science • Fueling Progress • Revolutionizing Care.”

Visit booth #4159 at the AACR Annual Meeting 2024 to connect with members of the Aging team.

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed and archived by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com​​ and connect with us:

  • Aging X
  • Aging Facebook
  • Aging Instagram
  • Aging YouTube
  • Aging LinkedIn
  • Aging SoundCloud
  • Aging Pinterest
  • Aging Reddit

Click here to subscribe to Aging publication updates.

For media inquiries, please contact media@impactjournals.com.


Read More

Continue Reading

Uncategorized

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

One month after the inflation outlook tracked…

Published

on

NY Fed Finds Medium, Long-Term Inflation Expectations Jump Amid Surge In Stock Market Optimism

One month after the inflation outlook tracked by the NY Fed Consumer Survey extended their late 2023 slide, with 3Y inflation expectations in January sliding to a record low 2.4% (from 2.6% in December), even as 1 and 5Y inflation forecasts remained flat, moments ago the NY Fed reported that in February there was a sharp rebound in longer-term inflation expectations, rising to 2.7% from 2.4% at the three-year ahead horizon, and jumping to 2.9% from 2.5% at the five-year ahead horizon, while the 1Y inflation outlook was flat for the 3rd month in a row, stuck at 3.0%. 

The increases in both the three-year ahead and five-year ahead measures were most pronounced for respondents with at most high school degrees (in other words, the "really smart folks" are expecting deflation soon). The survey’s measure of disagreement across respondents (the difference between the 75th and 25th percentile of inflation expectations) decreased at all horizons, while the median inflation uncertainty—or the uncertainty expressed regarding future inflation outcomes—declined at the one- and three-year ahead horizons and remained unchanged at the five-year ahead horizon.

Going down the survey, we find that the median year-ahead expected price changes increased by 0.1 percentage point to 4.3% for gas; decreased by 1.8 percentage points to 6.8% for the cost of medical care (its lowest reading since September 2020); decreased by 0.1 percentage point to 5.8% for the cost of a college education; and surprisingly decreased by 0.3 percentage point for rent to 6.1% (its lowest reading since December 2020), and remained flat for food at 4.9%.

We find the rent expectations surprising because it is happening just asking rents are rising across the country.

At the same time as consumers erroneously saw sharply lower rents, median home price growth expectations remained unchanged for the fifth consecutive month at 3.0%.

Turning to the labor market, the survey found that the average perceived likelihood of voluntary and involuntary job separations increased, while the perceived likelihood of finding a job (in the event of a job loss) declined. "The mean probability of leaving one’s job voluntarily in the next 12 months also increased, by 1.8 percentage points to 19.5%."

Mean unemployment expectations - or the mean probability that the U.S. unemployment rate will be higher one year from now - decreased by 1.1 percentage points to 36.1%, the lowest reading since February 2022. Additionally, the median one-year-ahead expected earnings growth was unchanged at 2.8%, remaining slightly below its 12-month trailing average of 2.9%.

Turning to household finance, we find the following:

  • The median expected growth in household income remained unchanged at 3.1%. The series has been moving within a narrow range of 2.9% to 3.3% since January 2023, and remains above the February 2020 pre-pandemic level of 2.7%.
  • Median household spending growth expectations increased by 0.2 percentage point to 5.2%. The increase was driven by respondents with a high school degree or less.
  • Median year-ahead expected growth in government debt increased to 9.3% from 8.9%.
  • The mean perceived probability that the average interest rate on saving accounts will be higher in 12 months increased by 0.6 percentage point to 26.1%, remaining below its 12-month trailing average of 30%.
  • Perceptions about households’ current financial situations deteriorated somewhat with fewer respondents reporting being better off than a year ago. Year-ahead expectations also deteriorated marginally with a smaller share of respondents expecting to be better off and a slightly larger share of respondents expecting to be worse off a year from now.
  • The mean perceived probability that U.S. stock prices will be higher 12 months from now increased by 1.4 percentage point to 38.9%.
  • At the same time, perceptions and expectations about credit access turned less optimistic: "Perceptions of credit access compared to a year ago deteriorated with a larger share of respondents reporting tighter conditions and a smaller share reporting looser conditions compared to a year ago."

Also, a smaller percentage of consumers, 11.45% vs 12.14% in prior month, expect to not be able to make minimum debt payment over the next three months

Last, and perhaps most humorous, is the now traditional cognitive dissonance one observes with these polls, because at a time when long-term inflation expectations jumped, which clearly suggests that financial conditions will need to be tightened, the number of respondents expecting higher stock prices one year from today jumped to the highest since November 2021... which incidentally is just when the market topped out during the last cycle before suffering a painful bear market.

Tyler Durden Mon, 03/11/2024 - 12:40

Read More

Continue Reading

Uncategorized

Homes listed for sale in early June sell for $7,700 more

New Zillow research suggests the spring home shopping season may see a second wave this summer if mortgage rates fall
The post Homes listed for sale in…

Published

on

  • A Zillow analysis of 2023 home sales finds homes listed in the first two weeks of June sold for 2.3% more. 
  • The best time to list a home for sale is a month later than it was in 2019, likely driven by mortgage rates.
  • The best time to list can be as early as the second half of February in San Francisco, and as late as the first half of July in New York and Philadelphia. 

Spring home sellers looking to maximize their sale price may want to wait it out and list their home for sale in the first half of June. A new Zillow® analysis of 2023 sales found that homes listed in the first two weeks of June sold for 2.3% more, a $7,700 boost on a typical U.S. home.  

The best time to list consistently had been early May in the years leading up to the pandemic. The shift to June suggests mortgage rates are strongly influencing demand on top of the usual seasonality that brings buyers to the market in the spring. This home-shopping season is poised to follow a similar pattern as that in 2023, with the potential for a second wave if the Federal Reserve lowers interest rates midyear or later. 

The 2.3% sale price premium registered last June followed the first spring in more than 15 years with mortgage rates over 6% on a 30-year fixed-rate loan. The high rates put home buyers on the back foot, and as rates continued upward through May, they were still reassessing and less likely to bid boldly. In June, however, rates pulled back a little from 6.79% to 6.67%, which likely presented an opportunity for determined buyers heading into summer. More buyers understood their market position and could afford to transact, boosting competition and sale prices.

The old logic was that sellers could earn a premium by listing in late spring, when search activity hit its peak. Now, with persistently low inventory, mortgage rate fluctuations make their own seasonality. First-time home buyers who are on the edge of qualifying for a home loan may dip in and out of the market, depending on what’s happening with rates. It is almost certain the Federal Reserve will push back any interest-rate cuts to mid-2024 at the earliest. If mortgage rates follow, that could bring another surge of buyers later this year.

Mortgage rates have been impacting affordability and sale prices since they began rising rapidly two years ago. In 2022, sellers nationwide saw the highest sale premium when they listed their home in late March, right before rates barreled past 5% and continued climbing. 

Zillow’s research finds the best time to list can vary widely by metropolitan area. In 2023, it was as early as the second half of February in San Francisco, and as late as the first half of July in New York. Thirty of the top 35 largest metro areas saw for-sale listings command the highest sale prices between May and early July last year. 

Zillow also found a wide range in the sale price premiums associated with homes listed during those peak periods. At the hottest time of the year in San Jose, homes sold for 5.5% more, a $88,000 boost on a typical home. Meanwhile, homes in San Antonio sold for 1.9% more during that same time period.  

 

Metropolitan Area Best Time to List Price Premium Dollar Boost
United States First half of June 2.3% $7,700
New York, NY First half of July 2.4% $15,500
Los Angeles, CA First half of May 4.1% $39,300
Chicago, IL First half of June 2.8% $8,800
Dallas, TX First half of June 2.5% $9,200
Houston, TX Second half of April 2.0% $6,200
Washington, DC Second half of June 2.2% $12,700
Philadelphia, PA First half of July 2.4% $8,200
Miami, FL First half of June 2.3% $12,900
Atlanta, GA Second half of June 2.3% $8,700
Boston, MA Second half of May 3.5% $23,600
Phoenix, AZ First half of June 3.2% $14,700
San Francisco, CA Second half of February 4.2% $50,300
Riverside, CA First half of May 2.7% $15,600
Detroit, MI First half of July 3.3% $7,900
Seattle, WA First half of June 4.3% $31,500
Minneapolis, MN Second half of May 3.7% $13,400
San Diego, CA Second half of April 3.1% $29,600
Tampa, FL Second half of June 2.1% $8,000
Denver, CO Second half of May 2.9% $16,900
Baltimore, MD First half of July 2.2% $8,200
St. Louis, MO First half of June 2.9% $7,000
Orlando, FL First half of June 2.2% $8,700
Charlotte, NC Second half of May 3.0% $11,000
San Antonio, TX First half of June 1.9% $5,400
Portland, OR Second half of April 2.6% $14,300
Sacramento, CA First half of June 3.2% $17,900
Pittsburgh, PA Second half of June 2.3% $4,700
Cincinnati, OH Second half of April 2.7% $7,500
Austin, TX Second half of May 2.8% $12,600
Las Vegas, NV First half of June 3.4% $14,600
Kansas City, MO Second half of May 2.5% $7,300
Columbus, OH Second half of June 3.3% $10,400
Indianapolis, IN First half of July 3.0% $8,100
Cleveland, OH First half of July  3.4% $7,400
San Jose, CA First half of June 5.5% $88,400

 

The post Homes listed for sale in early June sell for $7,700 more appeared first on Zillow Research.

Read More

Continue Reading

Trending