Connect with us

Spread & Containment

UK study finds Omicron cases less likely to be hospitalised

People infected with the Omicron variant of COVID-19 are 50% to 70% less likely to be admitted to
The post UK study finds Omicron cases less likely to be hospitalised appeared first on .

Published

on

People infected with the Omicron variant of COVID-19 are 50% to 70% less likely to be admitted to hospital than those infected with other variants, according to a UK study.

The new analysis from the UK Health Security Agency (UKHSA) also says Omicron infections are estimated to be between 31% to 45% less likely to lead to an emergency room visit than Delta.

There has been speculation that Omicron may be more likely to infect cells in the upper respiratory tract, making it highly transmissible, but less likely to penetrate deeper into the lungs were it can have more severe consequences.

The results are in line with preliminary findings from South Africa as well as an Imperial College London study reported earlier this week that also found reduced risk of hospitalisations, but are being greeted with caution given the very high infection rates currently being recorded in the UK.

With daily cases above 100,000 each day, there are concerns that the sheer numbers of cases could place pressure on the NHS even if Omicron turns out to cause milder COVID-19, particularly as there are reports of rising numbers of NHS staff off work due to coronavirus infections.

The UK set another daily record yesterday with almost 120,000 confirmed cases, although the 147 deaths within 28 days of a positive test remains well below the 1,000-plus daily fatalities recorded in the spring of 2020 and the start of 2021.

There were another 16,817 confirmed cases of Omicron, taking the total number across the UK to almost 91,000, concentrated in England but with sharp increases in Scotland, Northern Ireland and Wales.

There was other more sobering news from the UKHSA study as well. It suggests that COVID-19 vaccines’ ability to stop people catching Omicron starts to wane by 15% to 25%  just 10 weeks after a booster dose.

UKHSA stressed however that while that indicates reduced protection against symptomatic infection, the likelihood remains that a third dose will provide a good level of protection against developing severe COVID-19.

Israel has already opted for a fourth dose as a precautionary measure, but for now the UK remains fixed on getting as many people as possible vaccinated with primary and first booster doses.

Vaxzevria protects against the new variant

The UK government has opted to use the mRNA vaccines from Pfizer/BioNTech and Moderna as its booster vaccines.

AstraZeneca’s adenoviral shot Vaxzevria – the mainstay of the country’s primary immunisation campaign – is however also effective as a booster, according to a new study by AZ’s development partner Oxford University.

The lab analysis has found that neutralising antibody levels against Omicron following a third dose boost of Vaxzevria were broadly similar to levels achieved after two doses against the Delta variant. Earlier studies have shown that the mRNA shots also boost protection after a third dose.

“Vaxzevria plays an important role in vaccination programmes around the world and these data give us confidence that the vaccine should be given as a third dose booster,” said AZ’s head of biopharmaceuticals R&D Mene Pangalos.

The company is already working with Oxford University on a new version of its vaccine tailored to the Omicron variant.

Meanwhile, Novavax said that its Nuvaxovid vaccine – which was approved in the EU on Monday – is also able to generate neutralising antibody levels against Omicron that are high enough to provide protection.

The company it is on track to start clinical trials of a shot targeted to the new variant within the next few weeks.

The World Health Organization warned this week however that richer countries should not rely on boosters to escape the COVID-19 crisis. The focus should be on raising vaccination rates in lower-income nations, where low levels of protection can encourage the emergence of new variants.

The post UK study finds Omicron cases less likely to be hospitalised appeared first on .

Read More

Continue Reading

Spread & Containment

VIRI: Enrollment Complete in FORTRESS Trial; Results Expected in September 2022…

By David Bautz, PhD
NASDAQ:VIRI
READ THE FULL VIRI RESEARCH REPORT
Business Update
FORTRESS Trial Fully Enrolled; Topline Results in September 2022
On…

Published

on

By David Bautz, PhD

NASDAQ:VIRI

READ THE FULL VIRI RESEARCH REPORT

Business Update

FORTRESS Trial Fully Enrolled; Topline Results in September 2022

On April 28, 2022, Virios Therapeutics, Inc. (NASDAQ: VIRI) announced that it has completed enrollment of 425 fibromyalgia patients into the Phase 2b FORTRESS (Fibromyalgia Outcome Research Trial Evaluating Synergistic Suppression of Herpes Simplex Virus-1) trial, a randomized, double blind, placebo controlled study of IMC-1. The primary endpoint of the trial is reduction in pain and secondary endpoints include change in fatigue, sleep disturbance, global health status, and patient functionality (NCT04748705). An outline of the trial is shown below.

In parallel with the FORTRESS trial, Virios is continuing the chronic toxicology studies of IMC-1 in two animal species. The results of these studies are required by regulators before Virios will be allowed to dose patients for one year or more, which is the plan for the Phase 3 program. The results of the chronic toxicology studies should be known around the time of the completion of the FORTRESS trial, thus the company should be able to move into a final Phase 3 program following completion of the current study, pending positive results.

Testing Combination Antiviral Therapy for the Treatment of Long COVID

In February 2022, Virios announced a collaboration with the Bateman Horne Center (BHC) to test combination antiviral therapy for the treatment of Long COVID. Following an infection with SARS-CoV-2, the virus that causes COVID-19, approximately 30% of patients will experience symptoms that last for weeks or months, which is referred to as Long COVID. The range of symptoms varies from patient to patient, however the most commonly reported (from a recent meta analysis) were fatigue (58%), headache (44%), attention disorder (27%), hair loss (25%), and dyspnea (24%) (Lopez-Leon et al., 2021).

The main theories for what might be causing ...

Full story available on Benzinga.com

Read More

Continue Reading

Spread & Containment

Type-I interferon stops immune system ‘going rogue’ during viral infections

Hamilton, ON (May 17, 2022) – McMaster University researchers have found not only how some viral infections cause severe tissue damage, but also how…

Published

on

Hamilton, ON (May 17, 2022) – McMaster University researchers have found not only how some viral infections cause severe tissue damage, but also how to reduce that damage.

Credit: Georgia Kirkos/McMaster University

Hamilton, ON (May 17, 2022) – McMaster University researchers have found not only how some viral infections cause severe tissue damage, but also how to reduce that damage.

 

They have discovered how Type I interferon (IFN) stops the immune system ‘going rogue’ and attacking the body’s own tissues when fighting viral infections, including COVID-19.

 

Their paper was published in the journal PLOS Pathogens today.

  

Senior author Ali Ashkar said IFN is a well-known anti-viral signalling molecule released by the body’s cells that can trigger a powerful immune response against harmful viruses.

 

“What we have found is that it is also critical to stop white blood cells from releasing protease enzymes, which can damage organ tissue. It has this unique dual function to kick start an immune response against a viral infection on the one hand, as well as restrain that same response to prevent significant bystander tissue damage on the other,” he said.

 

The research team investigated IFN’s ability to regulate a potentially dangerous immune response by testing it on both flu and the HSV-2 virus, a highly prevalent sexually transmitted pathogen, using mice. Data from COVID-19 patients in Germany, including post-mortem lung samples, was also used in the study.

 

“For many viral infections, it is not actually the virus that causes most of the tissue damage, it is our heightened immune activation towards the virus,” said Ashkar, a professor of medicine at McMaster.

  

First co-author of the study and PhD student Emily Feng said: “Our body’s immune response is trying to fight off the virus infection, but there’s a risk of damaging innocent healthy tissue in the process. IFNs regulates the immune response to only target tissues that are infected.

 

“By discovering the mechanisms the immune system uses that can inadvertently cause tissue damage, we can intervene during infection to prevent this damage and not necessarily have to wait until vaccines are developed to develop life-saving treatments,” she added.

 

“This applies not just to COVID-19, but also other highly infectious viruses such as flu and Ebola, which can cause tremendous and often life-threatening damage to the body’s organs,” said first study co-author Amanda Lee, a family medicine resident. 

 

Ashkar said the release of harmful proteases is the result of a ‘cytokine storm’, which is life-threatening inflammation sometimes triggered by viral infections. It has been a common cause of death in patients with COVID-19, but treatment has been developed to prevent and suppress the cytokine storm.

 

Ashkar said that steroids like dexamethasone are already used to rein in an extreme immune response to viral infections. The authors used doxycycline in their study, an antibiotic used for bacterial infections and as an anti-inflammatory agent, inhibits the function of proteases causing the bystander tissue damage.

 

Lee added: “This has the potential in the future to be used to alleviate virus-induced life-threatening inflammation and warrants further research.” 

 

The study was funded by the Canadian Institutes of Health Research.

 

-30-

 

Editors:

Pictures of Ali Ashkar and Emily Feng may be found at https://bit.ly/3wmSw0D

  

 

 


Read More

Continue Reading

Spread & Containment

mRNA vaccines like Pfizer and Moderna fare better against COVID-19 variants of concern

A comparison of four COVID-19 vaccinations shows that messenger RNA (mRNA) vaccines — Pfizer-BioNTech and Moderna — perform better against the World…

Published

on

A comparison of four COVID-19 vaccinations shows that messenger RNA (mRNA) vaccines — Pfizer-BioNTech and Moderna — perform better against the World Health Organization’s variants of concern (VOCs) than viral vector vaccines — AstraZeneca and J&J/Janssen. Although they all effectively prevent severe disease by VOCs, the research, publishing May 17th in the open access journal PLOS Medicine, suggests that people receiving a viral vector vaccine are more vulnerable to infection by new variants.

Credit: Carlos Reusser Monsalvez, Flickr (CC0, https://creativecommons.org/publicdomain/zero/1.0/)

A comparison of four COVID-19 vaccinations shows that messenger RNA (mRNA) vaccines — Pfizer-BioNTech and Moderna — perform better against the World Health Organization’s variants of concern (VOCs) than viral vector vaccines — AstraZeneca and J&J/Janssen. Although they all effectively prevent severe disease by VOCs, the research, publishing May 17th in the open access journal PLOS Medicine, suggests that people receiving a viral vector vaccine are more vulnerable to infection by new variants.

By March 2022, COVID-19 had caused over 450 million confirmed infections and six million reported deaths. The first vaccines approved in the US and Europe that protect against serious infection are Pfizer-BioNTech and Moderna, which deliver genetic code, known as mRNA, to the bodies’ cells, whereas Oxford/AstraZeneca and J&J/Janssen are viral vector vaccines that use a modified version of a different virus — a vector — to deliver instructions to our cells. Three vaccines are delivered as two separate injections a few weeks apart, and J&J/Janssen as a single dose.

Marit J. van Gils at the University of Amsterdam, Netherlands, and colleagues, took blood samples from 165 healthcare workers, three and four weeks after first and second vaccination respectively, and for J&J/Janssen at four to five and eight weeks after vaccination. Samples were collected before, and four weeks after a Pfizer-BioNTech booster.

Four weeks after the initial two doses, antibody responses to the original SARS-CoV-2 viral strain were highest in recipients of Moderna, followed closely by Pfizer-BioNTech, and were substantially lower in those who received viral vector vaccines. Tested against the VOCs – Alpha, Beta, Gamma, Delta and Omicron – neutralizing antibodies were higher in the mRNA vaccine recipients compared to those who had viral vector vaccines. The ability to neutralize VOCs was reduced in all vaccine groups, with the greatest reduction against Omicron. The Pfizer-BioNTech booster increased antibody responses in all groups with substantial improvement against VOCs, including Omicron.

The researchers caution that their AstraZeneca group was significantly older, because of safety concerns for the vaccine in younger age groups. As immune responses tend to weaken with age, this could affect the results. This group was also smaller because the Dutch government halted use for a period.

van Gils concludes, “Four COVID-19 vaccines induce substantially different antibody responses.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Medicine:

http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003991

Citation: van Gils MJ, Lavell A, van der Straten K, Appelman B, Bontjer I, Poniman M, et al. (2022) Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Med 19(5): e1003991. https://doi.org/10.1371/journal.pmed.1003991

 

Author Countries: The Netherlands, United States

 

Funding: This work was supported by the Netherlands Organization for Scientific Research (NWO) ZonMw (Vici grant no. 91818627 to R.W.S., S3 study, grant agreement no. 10430022010023 to M.K.B.; RECoVERED, grant agreement no. 10150062010002 to M.D.d.J.), by the Bill & Melinda Gates Foundation (grant no. INV002022 and INV008818 to R.W.S. and INV-024617 to M.J.v.G.), by Amsterdam UMC through the AMC Fellowship (to M.J.v.G.) and the Corona Research Fund (to M.K.B.), and by the European Union’s Horizon 2020 program (RECoVER, grant no. 101003589 to M.D.d.J). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Read More

Continue Reading

Trending