Connect with us

International

One-Third Of Ukraine’s Power Stations Destroyed As WHO Warns Of “Brutal” Winter Ahead

One-Third Of Ukraine’s Power Stations Destroyed As WHO Warns Of "Brutal" Winter Ahead

Ukrainian President Volodymyr Zelensky announced Tuesday…

Published

on

One-Third Of Ukraine's Power Stations Destroyed As WHO Warns Of "Brutal" Winter Ahead

Ukrainian President Volodymyr Zelensky announced Tuesday that up to one-third of all power stations have been attacked by Russian missile and drone strikes over the past week, causing "massive blackouts across the country."

He called these ongoing strikes against energy infrastructure "terrorist attacks" and said this means there's "No space left for negotiations with Putin’s regime," according a tweet.

For more than a week Russia has stepped up an aerial bombardment campaign against dozens of cities and towns which has included widespread use of suicide drones. Ukraine and its Western backers suspect these are Iranian-made drones, cause the EU to threaten new sanctions against Tehran on Tuesday. 

Getty Images

Zelensky said in a separate social media post that Russian forces act "insidiously – kills civilians, hits housing, infrastructure," according to a Telegram statement. "Due to the Russian missile terror in some cities and regions of Ukraine, energy workers have to limit the supply of electricity so that the entire system works stably."

The Hill on Tuesday wrote of some the latest strikes, "The city of Zhytomyr, which is west of the capital Kyiv, lost power after a double missile strike targeted an energy facility on Tuesday." The report observed further that "In Kyiv, missile strikes damaged two power facilities and on Monday the city was bombarded by waves of exploding suicide drones."

Ukraine's second largest city of Kharkiv, which sits near the Russian border, was also hit in a major attack on its energy infrastructure. This has threatened the power grid in a city with a pre-war population of nearly 1.5 million. Reuters has called it a "deliberate campaign to destroy electricity and water facilities before winter."

The two Russian regions of Belgorod and Kursk have meanwhile said their populations have been terrorized by shelling attacks from the Ukrainian side of the border. "Train traffic in the Belgorod region was temporarily brought to a halt after shelling struck a railway station and damaged the railroad tracks, the region’s Governor Vyacheslav Gladkov wrote on his official Telegram channel," The Moscow Times reports.

"One man was wounded by shrapnel in his legs and two villages experienced power outages, he added," the publication said. "In the Kursk region, Governor Roman Starovoit reported that Ukraine shelled the villages of Tetkino and Popovo-Lezhachi, also bringing power outages to the region."

These new waves of Russian attacks on Ukraine's energy come amid a World Health Organization (WHO) warning for Ukraine and perhaps even all of Europe:

WHO Regional Director for Europe Hans Henri P. Kluge said at the media briefing that the organization is working to anticipate and prepare for the challenges of the approaching “brutal” winter in its humanitarian response to Russia’s war on the country.

Kluge remarked that risk of COVID-19, frostbite, hypothermia, pneumonia, stroke and heart attack will likely increase among Ukrainians who are living “precariously,” whether in substandard shelters, without access to heating or by regularly moving to different locations.

"The destruction of houses and lack of access to fuel or electricity due to damaged infrastructure could become a matter of life or death if people are unable to heat their homes," Kluge emphasized. 

Despite billions of dollars in humanitarian aid continuing to flow to Kiev from Western allied governments, the degradation of infrastructure could still take years to fix, especially amid threatening war-time conditions and logistical challenges of getting parts to make rapid fixes.

Tyler Durden Tue, 10/18/2022 - 10:05

Read More

Continue Reading

International

Elon Musk’s says the Boring Company to reach $1 trillion market cap by 2030

Musk said there’s really only one roadblock to this company achieving this mega-cap value.

Published

on

Elon Musk wants to create and control an artificial superintelligence and guide humanity in an effort to colonize Mars. But before we get there, he wants to solve the problem of traffic right here on Earth. 

In 2016, the tech billionaire tweeted himself into a new company: "Traffic is driving me nuts. I am going to build a tunnel boring machine and just start digging..." he wrote. A series of tweets followed this proclamation as the idea germinated and cemented in Musk's head: "It shall be called 'The Boring Company.' I am actually going to do this."

Related: Elon Musk is frustrated about a major SpaceX roadblock

The firm's goal is to "solve the problem of soul-destroying traffic," by creating a series of underground transportation tunnels. Taking transportation underground, the company says, should additionally "allows us to repurpose roads into community-enhancing spaces, and beautify our cities."

The tunneling company broke ground on its first project in Feb. 2017 and has since completed three projects: the Las Vegas Convention Center (LVCC), the Hyperloop Test Track and the R&D Tunnel. It is currently working on a 68-mile Las Vegas Loop station that will eventually connect 93 stations between Las Vegas and Los Angeles. Once in operation, the Vegas Loop will transport 90,000 passengers every hour, according to the company. 

More Elon Musk News:

Part of Musk's proposition is that, with the right technology, he can make tunneling a quick and relatively inexpensive process. The company's Prufrock machine allows Boring to "construct mega-infrastructure projects in a matter of weeks instead of years." The machine can mine one mile/week, with new iterations expected to further increase that output. 

Elon Musk is looking to transform traffic and transportation with one of his many ventures. 

Bloomberg/Getty Images

By 2030, Youtuber and investor Warren Redlich wrote in a post on X, Boring will have more than 10,000 miles of tunnel. By 2035, he said, that number will rise to 100,000. With that increase in tunnel space, Redlich thinks that Boring will IPO by 2028 and hit a $1 trillion market valuation by 2030. 

Musk said that this bullish prediction might actually be possible. 

"This is actually possible from a technology standpoint," he wrote in response. "By far the biggest impediment is getting permits. Construction is becoming practically illegal in North America and Europe!"

Action Alerts PLUS offers expert portfolio guidance to help you make informed investing decisions. Sign up now.

Read More

Continue Reading

International

AI increases precision in plant observation

Artificial intelligence (AI) can help plant scientists collect and analyze unprecedented volumes of data, which would not be possible using conventional…

Published

on

Artificial intelligence (AI) can help plant scientists collect and analyze unprecedented volumes of data, which would not be possible using conventional methods. Researchers at the University of Zurich (UZH) have now used big data, machine learning and field observations in the university’s experimental garden to show how plants respond to changes in the environment.

Credit: UZH

Artificial intelligence (AI) can help plant scientists collect and analyze unprecedented volumes of data, which would not be possible using conventional methods. Researchers at the University of Zurich (UZH) have now used big data, machine learning and field observations in the university’s experimental garden to show how plants respond to changes in the environment.

Climate change is making it increasingly important to know how plants can survive and thrive in a changing environment. Conventional experiments in the lab have shown that plants accumulate pigments in response to environmental factors. To date, such measurements were made by taking samples, which required a part of the plant to be removed and thus damaged. “This labor-intensive method isn’t viable when thousands or millions of samples are needed. Moreover, taking repeated samples damages the plants, which in turn affects observations of how plants respond to environmental factors. There hasn’t been a suitable method for the long-term observation of individual plants within an ecosystem,” says Reiko Akiyama, first author of the study.

With the support of UZH’s University Research Priority Program (URPP) “Evolution in Action”, a team of researchers has now developed a method that enables scientists to observe plants in nature with great precision. PlantServation is a method that incorporates robust image-acquisition hardware and deep learning-based software to analyze field images, and it works in any kind of weather.

Millions of images support evolutionary hypothesis of robustness

Using PlantServation, the researchers collected (top-view) images of Arabidopsis plants on the experimental plots of UZH’s Irchel Campus across three field seasons (lasting five months from fall to spring) and then analyzed the more than four million images using machine learning. The data recorded the species-specific accumulation of a plant pigment called “anthocyanin” as a response to seasonal and annual fluctuations in temperature, light intensity and precipitation.

PlantServation also enabled the scientists to experimentally replicate what happens after the natural speciation of a hybrid polyploid species. These species develop from a duplication of the entire genome of their ancestors, a common type of species diversification in plants. Many wild and cultivated plants such as wheat and coffee originated in this way.

In the current study, the anthocyanin content of the hybrid polyploid species A. kamchatica resembled that of its two ancestors: from fall to winter its anthocyanin content was similar to that of the ancestor species originating from a warm region, and from winter to spring it resembled the other species from a colder region. “The results of the study thus confirm that these hybrid polyploids combine the environmental responses of their progenitors, which supports a long-standing hypothesis about the evolution of polyploids,” says Rie Shimizu-Inatsugi, one of the study’s two corresponding authors.

From Irchel Campus to far-flung regions

PlantServation was developed in the experimental garden at UZH’s Irchel Campus. “It was crucial for us to be able to use the garden on Irchel Campus to develop PlantServation’s hardware and software, but its application goes even further: when combined with solar power, its hardware can be used even in remote sites. With its economical and robust hardware and open-source software, PlantServation paves the way for many more future biodiversity studies that use AI to investigate plants other than Arabidopsis – from crops such as wheat to wild plants that play a key role for the environment,” says Kentaro Shimizu, corresponding author and co-director of the URPP Evolution in Action.

The project is an interdisciplinary collaboration with LPIXEL, a company that specializes in AI image analysis, and Japanese research institutes at Kyoto University and the University of Tokyo, among others, under the Global Strategy and Partnerships Funding Scheme of UZH Global Affairs and the International Leading Research grant program of the Japan Society for the Promotion of Science (JSPS). The project also received funding from the Swiss National Science Foundation (SNSF).

Strategic Partnership with Kyoto University

Kyoto University is one of UZH’s strategic partner universities. The strategic partnership ensures that high-potential research collaborations will receive the necessary support to thrive, for instance through the UZH Global Strategy and Partnership Funding Scheme. Over the last years, several joint research projects between Kyoto University and UZH have already received funding, among them “PlantServation”.


Read More

Continue Reading

International

How does voltage drive nonmetallic catalysts to perform electrocatalytic reactions?

Understanding how voltage drives nanoscale electrocatalysts to initiate reactions is a fundamental scientific question. This is especially challenging…

Published

on

Understanding how voltage drives nanoscale electrocatalysts to initiate reactions is a fundamental scientific question. This is especially challenging when dealing with non-metallic electrocatalysts due to their low inherent carrier concentration, which leads to poor conductivity. When voltage is applied at the non-metal/solution interface, the situation becomes more complex than in the case of metal/solution interfaces. One notable complexity is the significant potential drop within the non-metal, causing the surface potential to often deviate from the back potential. Analyzing the driving force for chemical reactions by applying classical metal models to non-metals can result in substantial inaccuracies. Up until now, distinguishing the potential distribution between the nonmetallic catalyst and the EDL still relies on complex theoretical calculations. The actual potential drop across the semiconductor-electrolyte interface remains unknown, due to the lacks of in in-situ techniques. Moreover, conventional electrochemical characterization only provides the ensemble information for electrode materials, neglecting the spatial heterogeneity in the electronic structures of catalysts. Therefore, a spatially resolved in-situ characterization technique is highly needed.

Credit: ©Science China Press

Understanding how voltage drives nanoscale electrocatalysts to initiate reactions is a fundamental scientific question. This is especially challenging when dealing with non-metallic electrocatalysts due to their low inherent carrier concentration, which leads to poor conductivity. When voltage is applied at the non-metal/solution interface, the situation becomes more complex than in the case of metal/solution interfaces. One notable complexity is the significant potential drop within the non-metal, causing the surface potential to often deviate from the back potential. Analyzing the driving force for chemical reactions by applying classical metal models to non-metals can result in substantial inaccuracies. Up until now, distinguishing the potential distribution between the nonmetallic catalyst and the EDL still relies on complex theoretical calculations. The actual potential drop across the semiconductor-electrolyte interface remains unknown, due to the lacks of in in-situ techniques. Moreover, conventional electrochemical characterization only provides the ensemble information for electrode materials, neglecting the spatial heterogeneity in the electronic structures of catalysts. Therefore, a spatially resolved in-situ characterization technique is highly needed.

In a new research article published in the Beijing-based National Science Review, scientists at Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Xiamen University, University of Chinese Academy of Sciences, Imperial College London autonomously constructed an in-situ surface potential microscope and successfully measured the surface potential of the basal plane of 2H molybdenum disulfide under various voltages. This achievement addresses the experimental challenge of directly measuring the potential distribution at the non-metal/solution interface. The research findings highlight a notable difference in how the surface potential of semiconductors changes with applied voltage compared to metals. When applying voltage from positive to negative, semiconductors shift from maintaining a stable surface potential to displaying variations, gradually resembling the behavior of metals. Scientists further clarified the differences in potential drop values at various applied voltages between the semiconductor (ΔVsem) and the double layer (ΔVedl). They vividly explained how, in a solution environment, the semiconductor’s Fermi level and band structure evolve, demonstrating a transformation of the semiconductor into a highly conductive semimetal.

To further investigate the role of voltage in electrocatalytic reactions, scientists employed atomic force-scanning electrochemical microscopy (AFM-SECM) to study electron transfer (ET) and hydrogen evolution reaction (HER) imaging on molybdenum disulfide. In ET imaging, the semiconductor’s basal plane exhibited strong electron transfer capability, comparable to that of the semimetal edge. However, HER imaging revealed catalytic inertness at the basal plane. Nano-electrochemical imaging results indicated that voltage only affects the ET step. Due to the absence of hydrogen adsorption sites on the basal plane (i.e., chemical sites), voltage cannot drive the electrons on the basal plane to further participate in chemical reactions. This work paves the way for the rational design of efficient nonmetallic electrocatalysts based on the understanding of how voltage acts on nonmetallic catalysts at the nanoscale.

See the article:

Visualizing the role of applied voltage in non-metal electrocatalyst
Natl Sci Rev 2023; doi: 10.1093/nsr/nwad166
https://doi.org/10.1093/nsr/nwad166


Read More

Continue Reading

Trending