Connect with us

International

Converting brain immune cells into neurons helps mice recover after stroke

Fukuoka, Japan – Researchers at Kyushu University have discovered that turning brain immune cells into neurons successfully restores brain function after…

Published

on

Fukuoka, Japan – Researchers at Kyushu University have discovered that turning brain immune cells into neurons successfully restores brain function after stroke-like injury in mice. These findings, published on October 10 in PNAS, suggest that replenishing neurons from immune cells could be a promising avenue for treating stroke in humans.

Credit: Irie et al. PNAS 2023

Fukuoka, Japan – Researchers at Kyushu University have discovered that turning brain immune cells into neurons successfully restores brain function after stroke-like injury in mice. These findings, published on October 10 in PNAS, suggest that replenishing neurons from immune cells could be a promising avenue for treating stroke in humans.

Stroke, and other cerebrovascular diseases, occur when blood flow to the brain is affected, causing damage to neurons. Recovery is often poor, with patients suffering from severe physical disabilities and cognitive problems. Worldwide, it’s one of the most common causes for needing long-term care.

“When we get a cut or break a bone, our skin and bone cells can replicate to heal our body. But the neurons in our brain cannot easily regenerate, so the damage is often permanent,” says Professor Kinichi Nakashima, from Kyushu University’s Graduate School of Medical Sciences. “We therefore need to find new ways to replace lost neurons.”

One possible strategy is to convert other cells in the brain into neurons. Here, the researchers focused on microglia, the main immune cells in the central nervous system. Microglia are tasked with removing damaged or dead cells in the brain, so after a stroke, they move towards the site of injury and replicate quickly.

“Microglia are abundant and exactly in the place we need them, so they are an ideal target for conversion,” says first author, Dr. Takashi Irie from Kyushu University Hospital.

In prior research, the team demonstrated that they could induce microglia to develop into neurons in the brains of healthy mice. Now, Dr. Irie and Professor Nakashima, along with Lecturer Taito Matsuda and Professor Noriko Isobe from Kyushu University Graduate School of Medical Sciences, showed that this strategy of replacing neurons also works in injured brains and contributes to brain recovery.

To conduct the study, the researchers caused a stroke-like injury in mice by temporarily blocking the right middle cerebral artery – a major blood vessel in the brain that is commonly associated with stroke in humans. A week later, the researchers examined the mice and found that they had difficulties in motor function and had a marked loss of neurons in a brain region known as the striatum. This part of the brain is involved in decision making, action planning and motor coordination.

The researchers then used a lentivirus to insert DNA into microglial cells at the site of the injury. The DNA held instructions for producing NeuroD1, a protein that induces neuronal conversion. Over the subsequent weeks, the infected cells began developing into neurons and the areas of the brain with neuron loss decreased. By eight weeks, the new induced neurons had successfully integrated into the brain’s circuits.

At only three weeks post-infection, the mice showed improved motor function in behavioral tests. These improvements were lost when the researchers removed the new induced neurons, providing strong evidence that the newly converted neurons directly contributed to recovery.

“These results are very promising. The next step is to test whether NeuroD1 is also effective at converting human microglia into neurons and confirm that our method of inserting genes into the microglial cells is safe,” says Professor Nakashima.

Furthermore, the treatment was conducted in mice in the acute phase after stroke, when microglia were migrating to and replicating at the site of injury. Therefore, the researchers also plan to see if recovery is also possible in mice at a later, chronic phase.

###

For more information about this research, see “Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke” Takashi Irie, Taito Matsuda, Yoshinori Hayashi, Kanae Matsuda-Ito, Akihide Kamiya, Takahiro Masuda, Marco Prinz, Noriko Isobe, Jun-ichi Kira, and Kinichi Nakashima, PNAS, https://www.pnas.org/doi/10.1073/pnas.2307972120

 This work was supported by the Kaibara Morikazu Medical Science Promotion Foundation (to T.I.), a Grant-in-Aid for Young Scientists (B) JP18K14820 (to T. Matsuda), a Grant-in-Aid for Scientific Research (B) JP21H02808 (to T. Matsuda), a Grant-in-Aid for Exploratory Research JP23K18451 (to T. Matsuda), the Takeda Science Foundation (to T. Matsuda), the Qdai-jump Research Program (Wakaba Challenge) of Kyushu University (to T. Matsuda), a research grant from The Noguchi Institute (to T. Matsuda), AMED JP21bm0404057 (to T. Matsuda and K.N.), AMED-CREST JP20gm1310008 (to K.N.), the Suzuken Memorial Foundation (to K.N.), the Naito Foundation (to K.N.), a Grant-in-Aid for Scientific Research on Innovative Areas JP16H06527 (to K.N.), JP16K21734 (to K.N.), and a Grant-in-Aid for Challenging Research (Exploratory) JP19K22473 (to K.N.).

About Kyushu University 
Kyushu University is one of Japan’s leading research-oriented institutes of higher education since its founding in 1911. Home to around 19,000 students and 8,000 faculty and staff, Kyushu U’s world-class research centers cover a wide range of study areas and research fields, from the humanities and arts to engineering and medical sciences. Its multiple campuses—including one of the largest in Japan—are located around Fukuoka City, a coastal metropolis on the southwestern Japanese island of Kyushu that is frequently ranked among the world’s most livable cities and historically known as Japan’s gateway to Asia. Through its Vision 2030, Kyushu U will ‘Drive Social Change with Integrative Knowledge.’ Its synergistic application of knowledge will encompass all of academia and solve issues in society while innovating new systems for a better future.


Read More

Continue Reading

International

Four burning questions about the future of the $16.5B Novo-Catalent deal

To build or to buy? That’s a classic question for pharma boardrooms, and Novo Nordisk is going with both.
Beyond spending billions of dollars to expand…

Published

on

To build or to buy? That’s a classic question for pharma boardrooms, and Novo Nordisk is going with both.

Beyond spending billions of dollars to expand its own production capacity for its weight loss drugs, the Danish drugmaker said Monday it will pay $11 billion to acquire three manufacturing plants from Catalent. It’s part of a broader $16.5 billion deal with Novo Holdings, the investment arm of the pharma’s parent group, which agreed to acquire the contract manufacturer and take it private.

It’s a big deal for all parties, with potential ripple effects across the biotech ecosystem. Here’s a look at some of the most pressing questions to watch after Monday’s announcement.

Why did Novo do this?

Novo Holdings isn’t the most obvious buyer for Catalent, particularly after last year’s on-and-off M&A interest from the serial acquirer Danaher. But the deal could benefit both Novo Holdings and Novo Nordisk.

Novo Nordisk’s biggest challenge has been simply making enough of the weight loss drug Wegovy and diabetes therapy Ozempic. On last week’s earnings call, Novo Nordisk CEO Lars Fruergaard Jørgensen said the company isn’t constrained by capital in its efforts to boost manufacturing. Rather, the main challenge is the limited amount of capabilities out there, he said.

“Most pharmaceutical companies in the world would be shopping among the same manufacturers,” he said. “There’s not an unlimited amount of machinery and people to build it.”

While Novo was already one of Catalent’s major customers, the manufacturer has been hamstrung by its own balance sheet. With roughly $5 billion in debt on its books, it’s had to juggle paying down debt with sufficiently investing in its facilities. That’s been particularly challenging in keeping pace with soaring demand for GLP-1 drugs.

Novo, on the other hand, has the balance sheet to funnel as much money as needed into the plants in Italy, Belgium, and Indiana. It’s also struggled to make enough of its popular GLP-1 drugs to meet their soaring demand, with documented shortages of both Ozempic and Wegovy.

The impact won’t be immediate. The parties expect the deal to close near the end of 2024. Novo Nordisk said it expects the three new sites to “gradually increase Novo Nordisk’s filling capacity from 2026 and onwards.”

As for the rest of Catalent — nearly 50 other sites employing thousands of workers — Novo Holdings will take control. The group previously acquired Altasciences in 2021 and Ritedose in 2022, so the Catalent deal builds on a core investing interest in biopharma services, Novo Holdings CEO Kasim Kutay told Endpoints News.

Kasim Kutay

When asked about possible site closures or layoffs, Kutay said the team hasn’t thought about that.

“That’s not our track record. Our track record is to invest in quality businesses and help them grow,” he said. “There’s always stuff to do with any asset you own, but we haven’t bought this company to do some of the stuff you’re talking about.”

What does it mean for Catalent’s customers? 

Until the deal closes, Catalent will operate as a standalone business. After it closes, Novo Nordisk said it will honor its customer obligations at the three sites, a spokesperson said. But they didn’t answer a question about what happens when those contracts expire.

The wrinkle is the long-term future of the three plants that Novo Nordisk is paying for. Those sites don’t exclusively pump out Wegovy, but that could be the logical long-term aim for the Danish drugmaker.

The ideal scenario is that pricing and timelines remain the same for customers, said Nicole Paulk, CEO of the gene therapy startup Siren Biotechnology.

Nicole Paulk

“The name of the group that you’re going to send your check to is now going to be Novo Holdings instead of Catalent, but otherwise everything remains the same,” Paulk told Endpoints. “That’s the best-case scenario.”

In a worst case, Paulk said she feared the new owners could wind up closing sites or laying off Catalent groups. That could create some uncertainty for customers looking for a long-term manufacturing partner.

Are shareholders and regulators happy? 

The pandemic was a wild ride for Catalent’s stock, with shares surging from about $40 to $140 and then crashing back to earth. The $63.50 share price for the takeover is a happy ending depending on the investor.

On that point, the investing giant Elliott Investment Management is satisfied. Marc Steinberg, a partner at Elliott, called the agreement “an outstanding outcome” that “clearly maximizes value for Catalent stockholders” in a statement.

Elliott helped kick off a strategic review last August that culminated in the sale agreement. Compared to Catalent’s stock price before that review started, the deal pays a nearly 40% premium.

Alessandro Maselli

But this is hardly a victory lap for CEO Alessandro Maselli, who took over in July 2022 when Catalent’s stock price was north of $100. Novo’s takeover is a tacit acknowledgment that Maselli could never fully right the ship, as operational problems plagued the company throughout 2023 while it was limited by its debt.

Additional regulatory filings in the next few weeks could give insight into just how competitive the sale process was. William Blair analysts said they don’t expect a competing bidder “given the organic investments already being pursued at other leading CDMOs and the breadth and scale of Catalent’s operations.”

The Blair analysts also noted the companies likely “expect to spend some time educating relevant government agencies” about the deal, given the lengthy closing timeline. Given Novo Nordisk’s ascent — it’s now one of Europe’s most valuable companies — paired with the limited number of large contract manufacturers, antitrust regulators could be interested in taking a close look.

Are Catalent’s problems finally a thing of the past?

Catalent ran into a mix of financial and operational problems over the past year that played no small part in attracting the interest of an activist like Elliott.

Now with a deal in place, how quickly can Novo rectify those problems? Some of the challenges were driven by the demands of being a publicly traded company, like failing to meet investors’ revenue expectations or even filing earnings reports on time.

But Catalent also struggled with its business at times, with a range of manufacturing delays, inspection reports and occasionally writing down acquisitions that didn’t pan out. Novo’s deep pockets will go a long way to a turnaround, but only the future will tell if all these issues are fixed.

Kutay said his team is excited by the opportunity and was satisfied with the due diligence it did on the company.

“We believe we’re buying a strong company with a good management team and good prospects,” Kutay said. “If that wasn’t the case, I don’t think we’d be here.”

Amber Tong and Reynald Castañeda contributed reporting.

Read More

Continue Reading

International

Petrina Kamya, Ph.D., Head of AI Platforms at Insilico Medicine, presents at BIO CEO & Investor Conference

Petrina Kamya, PhD, Head of AI Platforms and President of Insilico Medicine Canada, will present at the BIO CEO & Investor Conference happening Feb….

Published

on

Petrina Kamya, PhD, Head of AI Platforms and President of Insilico Medicine Canada, will present at the BIO CEO & Investor Conference happening Feb. 26-27 at the New York Marriott Marquis in New York City. Dr. Kamya will speak as part of the panel “AI within Biopharma: Separating Value from Hype,” on Feb. 27, 1pm ET along with Michael Nally, CEO of Generate: Biomedicines and Liz Schwarzbach, PhD, CBO of BigHat Biosciences.

Credit: Insilico Medicine

Petrina Kamya, PhD, Head of AI Platforms and President of Insilico Medicine Canada, will present at the BIO CEO & Investor Conference happening Feb. 26-27 at the New York Marriott Marquis in New York City. Dr. Kamya will speak as part of the panel “AI within Biopharma: Separating Value from Hype,” on Feb. 27, 1pm ET along with Michael Nally, CEO of Generate: Biomedicines and Liz Schwarzbach, PhD, CBO of BigHat Biosciences.

The session will look at how the latest artificial intelligence (AI) tools – including generative AI and large language models – are currently being used to advance the discovery and design of new drugs, and which technologies are still in development. 

The BIO CEO & Investor Conference brings together over 1,000 attendees and more than 700 companies across industry and institutional investment to discuss the future investment landscape of biotechnology. Sessions focus on topics such as therapeutic advancements, market outlook, and policy priorities.

Insilico Medicine is a leading, clinical stage AI-driven drug discovery company that has raised over $400m in investments since it was founded in 2014. Dr. Kamya leads the development of the Company’s end-to-end generative AI platform, Pharma.AI from Insilico’s AI R&D Center in Montreal. Using modern machine learning techniques in the context of chemistry and biology, the platform has driven the discovery and design of 30+ new therapies, with five in clinical stages – for cancer, fibrosis, inflammatory bowel disease (IBD), and COVID-19. The Company’s lead drug, for the chronic, rare lung condition idiopathic pulmonary fibrosis, is the first AI-designed drug for an AI-discovered target to reach Phase II clinical trials with patients. Nine of the top 20 pharmaceutical companies have used Insilico’s AI platform to advance their programs, and the Company has a number of major strategic licensing deals around its AI-designed therapeutic assets, including with Sanofi, Exelixis and Menarini. 

 

About Insilico Medicine

Insilico Medicine, a global clinical stage biotechnology company powered by generative AI, is connecting biology, chemistry, and clinical trials analysis using next-generation AI systems. The company has developed AI platforms that utilize deep generative models, reinforcement learning, transformers, and other modern machine learning techniques for novel target discovery and the generation of novel molecular structures with desired properties. Insilico Medicine is developing breakthrough solutions to discover and develop innovative drugs for cancer, fibrosis, immunity, central nervous system diseases, infectious diseases, autoimmune diseases, and aging-related diseases. www.insilico.com 


Read More

Continue Reading

International

Another country is getting ready to launch a visa for digital nomads

Early reports are saying Japan will soon have a digital nomad visa for high-earning foreigners.

Published

on

Over the last decade, the explosion of remote work that came as a result of improved technology and the pandemic has allowed an increasing number of people to become digital nomads. 

When looked at more broadly as anyone not required to come into a fixed office but instead moves between different locations such as the home and the coffee shop, the latest estimate shows that there were more than 35 million such workers in the world by the end of 2023 while over half of those come from the United States.

Related: There is a new list of cities that are best for digital nomads

While remote work has also allowed many to move to cheaper places and travel around the world while still bringing in income, working outside of one's home country requires either dual citizenship or work authorization — the global shift toward remote work has pushed many countries to launch specific digital nomad visas to boost their economies and bring in new residents.

Japan is a very popular destination for U.S. tourists. 

Shutterstock

This popular vacation destination will soon have a nomad visa

Spain, Portugal, Indonesia, Malaysia, Costa Rica, Brazil, Latvia and Malta are some of the countries currently offering specific visas for foreigners who want to live there while bringing in income from abroad.

More Travel:

With the exception of a few, Asian countries generally have stricter immigration laws and were much slower to launch these types of visas that some of the countries with weaker economies had as far back as 2015. As first reported by the Japan Times, the country's Immigration Services Agency ended up making the leap toward a visa for those who can earn more than ¥10 million ($68,300 USD) with income from another country.

The Japanese government has not yet worked out the specifics of how long the visa will be valid for or how much it will cost — public comment on the proposal is being accepted throughout next week. 

That said, early reports say the visa will be shorter than the typical digital nomad option that allows foreigners to live in a country for several years. The visa will reportedly be valid for six months or slightly longer but still no more than a year — along with the ability to work, this allows some to stay beyond the 90-day tourist period typically afforded to those from countries with visa-free agreements.

'Not be given a residence card of residence certificate'

While one will be able to reapply for the visa after the time runs out, this can only be done by exiting the country and being away for six months before coming back again — becoming a permanent resident on the pathway to citizenship is an entirely different process with much more strict requirements.

"Those living in Japan with the digital nomad visa will not be given a residence card or a residence certificate, which provide access to certain government benefits," reports the news outlet. "The visa cannot be renewed and must be reapplied for, with this only possible six months after leaving the countr

The visa will reportedly start in March and also allow holders to bring their spouses and families with them. To start using the visa, holders will also need to purchase private health insurance from their home country while taxes on any money one earns will also need to be paid through one's home country.

Read More

Continue Reading

Trending