Connect with us

$3M Breakthrough Prize goes to scientist designing molecules to fight COVID-19

$3M Breakthrough Prize goes to scientist designing molecules to fight COVID-19

Published

on

The Breakthrough Prize Foundation announced $21.75 million in awards today for a variety of scientific achievements. One in particular is a tech/science crossover: A $3M award to David Baker, whose work over the last 20 years has helped validate the idea that computers can help us understand and create complex molecules like proteins — and the latest such molecule may lead to new treatments for COVID-19.

Baker is the head of the Institute for Protein Design at the University of Washington, and for two decades has helped explore and define the field of computer-aided molecular biology. His lab developed the Rosetta software for modeling the immensely complicated folding and other interactions of proteins, and also the FoldIT distributed computing network for spreading the task around to eager citizen scientists.

As Bakers says: “We could wait another million years for the protein we need to evolve, or we could design it ourselves.”

The prize is specifically for “For developing technology that allowed the design of proteins never seen before in nature, including novel proteins that have the potential for therapeutic intervention in human diseases.” This acknowledges Baker and his colleagues’ role in the technology as a whole, but his latest work may prove his most widely consequential: a bespoke molecule made specifically to blunt the sharp spikes of the novel coronavirus.

It’s the molecular equivalent to putting a scabbard on a sword. The only problem is that the sword doesn’t come with the scabbard — you have to make it yourself. And that’s a lot more complicated than it sounds, since there are so many factors in how the amino acids, atoms and bonds interact between the two. Fortunately that’s exactly the problem Baker and his team have been building a platform to solve.

A rendering of a molecule created to bind to a coronavirus spike protein.

The red molecule is the minibinder, attached to the blue coronavirus protein. Image Credits: David Baker / UW

“We have developed general design methods for creating proteins from scratch that are complementary in shape and chemical properties to arbitrary target sites,” Baker told TechCrunch. “We simply pointed these at the virus spike!”

The “de novo” proteins created and tested by the team bind strongly to the spike protein and don’t let go — hence their name, “hyperstable minibinders.” It’s no miracle cure, but it could be the start for a therapeutic approach that disables the virus’s method of spreading — once it’s been properly tested, of course.

“The designed protein described in the Science paper published today is looking very promising,” Baker said. “We are doing pre-clinical experiments to determine whether it could be an effective drug as is or needs to be modified.”

He also noted that “FoldIT players and Rosetta@home participants have been making important contributions to our anti-COVID efforts,” so good job if you’ve been donating computer cycles to the project.

You can see the many other prizes awarded this year, in topics such as Mathematics and Fundamental Physics, at the foundation’s news post here.

The Breakthrough Prize Foundation was originally born from the efforts (and coffers) of Yuri and Julia Milner, and the prize for Life Sciences is co-sponsored by Sergey Brin, Priscilla Chan and Mark Zuckerberg, Pony Ma and Anne Wojcicki.

Read More

Continue Reading

Government

Sinema out, Warnock in – Democrats narrowly control the Senate and Republicans the House, but gridlock won’t be the biggest problem for the new Congress

With Democrats running the Senate and the GOP in control of the House, there’s concern that Congress won’t get anything done. Turns out, unified government…

Published

on

Will gridlock mean the new Congress won't get anything done? mathisworks/Getty Images

In the wake of the 2022 U.S. midterm elections, a general sense of the political landscape in the upcoming 118th Congress has taken shape. With Sen. Kyrsten Sinema’s announcement that she is leaving the Democratic Party and Sen. Raphael Warnock’s victory in Georgia’s runoff, Democrats will maintain control in the Senate, while Republicans will take control of the House.

Divided government sparks fears of gridlock, a legislative standstill. At face value, this makes sense. Given the different policy priorities of the two major parties, you might expect to see each party passing legislation out of the chamber it controls that has little chance in the other chamber - and thus no chance of becoming law.

Logically, this means a less productive legislature than one in which a single party with a unified agenda controls both chambers and the presidency.

But as a political scientist who studies partisanship, I believe that divided government – including during the upcoming legislative session – will not produce greatly different legislative results than unified government.

This isn’t exactly a hopeful story, though.

Not much passes

The first reason that divided government isn’t less productive than unified government is because unified government isn’t very productive in the first place. It’s really hard to get things done even when the same party controls both chambers and the presidency.

Most legislation only clears the Senate if it has the 60 votes needed to break a filibuster. Neither party has come close to a so-called “filibuster-proof majority” of 60 seats since 2010, when Democrats briefly held 60 seats prior to Massachusetts Sen. Ted Kennedy’s death and the election of Republican Scott Brown to that seat. Thus, even a unified government is likely only passing measures that have some degree of minority party support.

A bunch of tired-looking men in suits at a meeting.
It can take a lot of talking and listening to get legislation passed in Congress. Here, a meeting of the Senate Foreign Relations Committee on Nov. 30, 2022. Chip Somodevilla/Getty Images

There are ways to force passage of legislation when one party doesn’t want it to pass. A process called budget reconciliation is not subject to filibuster, but it can only be used on provisions that deal directly with changes in revenues or spending. This is what happened with the Inflation Reduction Act of 2022, which Democrats were able to pass via reconciliation, with Vice President Kamala Harris casting the tiebreaking vote.

Further, legislative success under unified government assumes that the majority party is united. There is no guarantee of this, as seen in 2017 when Republican senators John McCain, Lisa Murkowski and Susan Collins joined Democrats in blocking the repeal of the Affordable Care Act.

Between 2011 and 2020 the vast majority of new laws clearing the House – roughly 90% – and the Senate – roughly 75% –did so with a majority of minority party members in support.

Even landmark legislation usually has support from most minority party members in at least one chamber. For example, the substantial 2020 revision of the North American Free Trade Agreement, or NAFTA, passed the House and Senate with overwhelming bipartisan support, as did the defense bill that created the Space Force.

A group of people going down the stairs of the US Capitol building on a sunny day.
While Congress is not that productive, sometimes it passes legislation. In 2020, lawmakers stream out of the Capitol after passing the Coronavirus Aid, Relief, and Economic Security Act. Bill Clark/CQ-Roll Call, Inc via Getty Images

Rewards – and risks – in crossing lines

On a more positive note, divided government may still provide opportunities for legislative breakthroughs.

The reason? The local orientation of Congress – lawmakers need to respond to their district’s voters.

In the House, according to a New York Times analysis, Republicans won 10 of the most competitive districts, including five in New York state alone. But the Cook Partisan Voting Index, which measures how strongly a district leans in favor of one party or the other, scores some of these districts as tilting Democratic – potentially giving these Republican members of Congress reason to reach across the aisle. The same goes for Democratic lawmakers whose districts tilt Republican.

But these kinds of mixed districts can also make it hard for sitting lawmakers to vote with their own party. While parties will work to keep a united front, research suggests that voters may punish those members of Congress who toe the party line too closely – providing a potential incentive for crossing party lines. Democratic legislators in Republican-leaning districts who voted for the Affordable Care Act, the Dodd-Frank financial regulation bill, or the stimulus bill, all Democratic Party priorities, suffered electorally in the 2010 midterms, receiving a lower vote share than those who voted against the legislation. In many cases, these lawmakers lost their seats.

Still, defections may be more likely given weak leadership, and currently it’s not certain who will fill the speaker’s role in the next Congress.

More consequential aspects

You don’t have to search for long to see examples of large legislative achievements produced during periods of divided government.

Divided government produced welfare reform in the 1990s and Social Security reform in the 1980s. The Coronavirus Aid, Relief and Economic Security (CARES) Act passed a Republican Senate and a Democratic House overwhelmingly in March 2020.

Certainly, there have been times during which unified governments have pushed legislation through with little minority party support. The Affordable Care Act and the Trump tax cuts were among them. But bipartisan legislative victories are much more common.

There are probably more consequential aspects to the GOP’s takeover of the House of Representatives than concerns over legislative gridlock.

House Republicans have already talked about using the investigatory powers of the chamber to investigate everyone from Hunter Biden to Anthony Fauci. A debt ceiling showdown, in which the GOP might use the threat of default on the U.S. government’s debt to force spending cuts, looms for what feels like the dozenth time in the past several years.

Matt Harris does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Read More

Continue Reading

Spread & Containment

Team undertakes study of two-dimensional transition metal chalcogenides

Two-dimensional materials, like transition metal dichalcogenide, have applications in public health because of their large surface area and high surface…

Published

on

Two-dimensional materials, like transition metal dichalcogenide, have applications in public health because of their large surface area and high surface sensitivities, along with their unique electrical, optical, and electrochemical properties. A research team has undertaken a review study of methods used to modulate the properties of two-dimensional transition metal dichalcogenide (TMD). These methods have important biomedical applications, including biosensing.

Credit: Nano Research Energy, Tsinghua University Press

Two-dimensional materials, like transition metal dichalcogenide, have applications in public health because of their large surface area and high surface sensitivities, along with their unique electrical, optical, and electrochemical properties. A research team has undertaken a review study of methods used to modulate the properties of two-dimensional transition metal dichalcogenide (TMD). These methods have important biomedical applications, including biosensing.

 

The team’s work is published in the journal Nano Research Energy on November 23, 2022.

 

The team’s goal is to present a comprehensive summarization of this promising field and show challenges and opportunities available in this research area. “In this review, we focus on the state-of-the-art methods to modulate properties of two-dimensional TMD and their applications in biosensing. In particular, we thoroughly discuss the structure, intrinsic properties, property modulation methods, and biosensing applications of TMD,” said Yu Lei, an assistant professor at the Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University.

 

Since graphene was discovered in 2004, two-dimensional materials, such as TMD, have attracted significant attention. Because of its unique properties, two-dimensional TMD can serve as the atomically thin platforms for energy storage and conversion, photoelectric conversion, catalysis, and biosensing. TMD also displays a wide band structure and has unusual optical properties. Yet another benefit of two-dimensional TMD is that it can be produced in large quantities at a low cost.

 

In public health, reliable and affordable in vitro and in vivo detection of biomolecules is essential for disease prevention and diagnosis. Especially during the COVID-19 pandemic, people have suffered not only from the physical disease, but also from the psychological problems related to extensive exposure to stress. Extensive stress can result in abnormal levels in biomarkers such as serotonin, dopamine, cortisol, and epinephrine. So, it is essential that scientists find non-invasive ways to monitor these biomarkers in body fluids, such as sweat, tears, and saliva. In order for health care professionals to quickly and accurately assess a person’s stress and diagnose psychological disease, biosensors are of significant importance in the diagnostics, environmental monitoring, and forensic industries.

 

The team reviewed the use of two-dimensional TMD as the functional material for biosensing, the approaches to modulate the properties of TMD, and different types of TMD-based biosensors including electric, optical, and electrochemical sensors. “Public health study is always a major task in preventing, diagnosing, and fighting off the diseases. Developing ultrasensitive and selective biosensors is critical for diseases prevention and diagnosing,” said Bilu Liu, an associate professor and a principal investigator at Shenzhen Geim Graphene Center, Shenzhen International Graduate School, Tsinghua University.

 

Two-dimensional TMD is a very sensitive platform for biosensing. These two-dimensional TMD based electrical/optical/electrochemical sensors have been readily used for biosensors ranging from small ions and molecules, such as Ca2+, H+, H2O2, NO2, NH3, to biomolecules such as dopamine and cortisol, that are related to central nervous disease, and all the way to molecule complexities, such as bacteria, virus, and protein.

 

The research team determined that despite the remarkable potentials, many challenges related to TMD-based biosensors still need to be solved before they can make a real impact. They suggest several possible research directions. The team recommends that the feedback loop assisted by machine learning be used to reduce the testing time needed to build the database needed for finding the proper biomolecules and TMD pairs. Their second recommendation is the use of a feedback loop assisted by machine learning to achieve the on-demand property modulation and biomolecules/TMD database. Knowing that TMD-based composites exhibit excellent performance when constructed into devices, their third recommendation is that surface modifications, such as defects and vacancies, be adopted to improve the activity of the TMD-based composites. Their last recommendation is that low-cost manufacturing methods at low temperature be developed to prepare TMD. The current chemical vapor deposition method used to prepare TMD can lead to cracks and wrinkles. A low-cost, low-temperature method would improve the quality of the films. “As the key technical issues are solved, the devices based on two-dimensional TMD will be the overarching candidates for the new healthcare technologies,” said Lei.

 

The Tsinghua University team includes Yichao Bai and Linxuan Sun, and Yu Lei from the Institute of Materials Research, Tsinghua Shenzhen International Graduate School and the Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School; along with Qiangmin Yu and Bilu Liu from the Institute of Materials Research, Tsinghua Shenzhen International Graduate School, and the Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School.

 

This research is funded by the National Natural Science Foundation of China, the National Science Fund for Distinguished Young Scholars, Guangdong Innovative and Entrepreneurial Research Team Program, the Shenzhen Basic Research Project, the Scientific Research Start-up Funds at Tsinghua Shenzhen International Graduate School, and Shenzhen Basic Research Project.

 

##

 

About Nano Research Energy 

 

Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

 


Read More

Continue Reading

Government

Climate-Change Lockdowns? Yup, They Are Actually Going There…

Climate-Change Lockdowns? Yup, They Are Actually Going There…

Authored by Michael Snyder via The End of The American Dream blog,

I suppose…

Published

on

Climate-Change Lockdowns? Yup, They Are Actually Going There...

Authored by Michael Snyder via The End of The American Dream blog,

I suppose that we should have known that this was inevitable.  After establishing a precedent during the pandemic, now the elite apparently intend to impose lockdowns for other reasons as well.  What I have detailed in this article is extremely alarming, and I hope that you will share it with everyone that you can.  Climate change lockdowns are here, and if people don’t respond very strongly to this it is likely that we will soon see similar measures implemented all over the western world.  The elite have always promised to do “whatever it takes” to fight climate change, and now we are finding out that they weren’t kidding.

Over in the UK, residents of Oxfordshire will now need a special permit to go from one “zone” of the city to another.  But even if you have the permit, you will still only be allowed to go from one zone to another “a maximum of 100 days per year”

Oxfordshire County Council yesterday approved plans to lock residents into one of six zones to ‘save the planet’ from global warming. The latest stage in the ’15 minute city’ agenda is to place electronic gates on key roads in and out of the city, confining residents to their own neighbourhoods.

Under the new scheme if residents want to leave their zone they will need permission from the Council who gets to decide who is worthy of freedom and who isn’t. Under the new scheme residents will be allowed to leave their zone a maximum of 100 days per year, but in order to even gain this every resident will have to register their car details with the council who will then track their movements via smart cameras round the city.

Are residents of Oxfordshire actually going to put up with this?

[ZH: Paul Joseph Watson notes that the local authorities in Oxford tried to ‘fact check’ the article claiming they’re imposing de facto ‘climate lockdowns’, but ended basically admitting that’s exactly what they’re doing...]

I never thought that we would actually see this sort of a thing get implemented in the western world, but here we are.

Of course there are a few people that are loudly objecting to this new plan, but one Oxfordshire official is pledging that “the controversial plan would go ahead whether people liked it or not”.

Ouch.

Meanwhile, France has decided to completely ban certain short-haul flights in an attempt to reduce carbon emissions…

France can now make you train rather than plane.

The European Commission (EC) has given French officials the green light to ban select domestic flights if the route in question can be completed via train in under two and a half hours.

The plan was first proposed in 2021 as a means to reduce carbon emissions. It originally called for a ban on eight short-haul flights, but the EC has only agreed to nix three that have quick, easy rail alternatives with several direct connections each way every day.

This is nuts.

But if the French public accepts these new restrictions, similar bans will inevitably be coming to other EU nations.

In the Netherlands, the government is actually going to be buying and shutting down approximately 3,000 farms in order to “reduce its nitrogen pollution”

The Dutch government is planning to purchase and then close down up to 3,000 farms in an effort to comply with a European Union environmental mandate to slash emissions, according to reports.

Farmers in the Netherlands will be offered “well over” the worth of their farm in an effort to take up the offer voluntarily, The Telegraph reported. The country is attempting to reduce its nitrogen pollution and will make the purchases if not enough farmers accept buyouts.

“There is no better offer coming,” Christianne van der Wal, nitrogen minister, told the Dutch parliament on Friday.

This is literally suicidal.

We are in the beginning stages of an unprecedented global food crisis, and the Dutch government has decided that now is the time to shut down thousands of farms?

I don’t even have the words to describe how foolish this is.

Speaking of suicide, Canada has found a way to get people to stop emitting any carbon at all once their usefulness is over.  Assisted suicide has become quite popular among the Canadians, and the number of people choosing that option keeps setting new records year after year

Last year, more than 10,000 people in Canada – astonishingly that’s over three percent of all deaths there – ended their lives via euthanasia, an increase of a third on the previous year. And it’s likely to keep rising: next year, Canada is set to allow people to die exclusively for mental health reasons.

If you are feeling depressed, Canada has a solution for that.

And if you are physically disabled, Canada has a solution for that too

Only last week, a jaw-dropping story emerged of how, five years into an infuriating battle to obtain a stairlift for her home, Canadian army veteran and Paralympian Christine Gauthier was offered an extraordinary alternative.

A Canadian official told her in 2019 that if her life was so difficult and she so ‘desperate’, the government would help her to kill herself. ‘I have a letter saying that if you’re so desperate, madam, we can offer you MAiD, medical assistance in dying,’ the paraplegic ex-army corporal testified to Canadian MPs.

“Medical assistance in dying” sounds so clinical.

But ultimately it is the greatest lockdown of all.

Because once you stop breathing, you won’t be able to commit any more “climate sins”.

All over the western world, authoritarianism is growing at a pace that is absolutely breathtaking.

If they can severely restrict travel and shut down farms today, what sort of tyranny will we see in the future?

Sadly, most people in the general population still do not understand what is happening.

Hopefully they will wake up before it is too late.

*  *  *

It is finally here! Michael’s new book entitled “End Times” is now available in paperback and for the Kindle on Amazon.

Tyler Durden Fri, 12/09/2022 - 06:30

Read More

Continue Reading

Trending